An enterprise of United McGill Corporation Founded in 1951

One Mission Park
Groveport, Ohio 43125-1149
614/836-9981, Fax: 614/836-9843
E-mail: marketing@mcgillairflow.com
Web site: http://www.mcgillairflow.com

Acousti-K27 ${ }^{\circledR}$ Double-Wall Round UNI-GASKET ${ }^{\text {TM }}$ Fitting and Related Product Dimensions

McGill AirFlow Corporation offers UNI-GASKET fittings featuring an EPDM rubber gasket that provides a reliable, airtight seal. Testing has shown that UNI-GASKET fittings meet or exceed SMACNA ${ }^{1}$ Class 3 for leakage at -20 in . wg to +20 in . wg. Each fitting is constructed of an inner liner ${ }^{7}$ surrounded by a layer of fiberglass insulation and covered by a solid metal pressure shell. The insulation is available in $1-, 2-$, and 3 -inch standard thicknesses and a maximum of 1.5 pounds per cubic foot (pcf) density ${ }^{6}$ to meet the thermal and acoustical performance requirements. The galvanized steel construction ${ }^{5}$ meets SMACNA's 10 in. wg positive pressure standards ${ }^{2}$. UNI-GASKET fittings are compatible and available with all of McGill AirFlow's round, double-wall duct types in 1-inch increments for 5 - through 12-inch diameters outer shells and in 2 -inch increments in 14- through 24 -inch outer shell diameters.

Table 1 - Positive Pressure, Double-wall, Round Duct and Fitting, Outer Shell Galvanized Steel Gauges

Diameters (inches)	UNI-SEAL ${ }^{\text {TM }}$ Spiral ${\text { Lockseam } \text { Duct }^{3}}^{2}$	UNI-RIB $^{\oplus}$ Spiral Lockseam with Standing Rib Duct 3,4	UNI-GASKET $^{\text {TM }}$ Fittings
3	28	NA	26
4	28	NA	26
5	28	NA	26
6	28	NA	26
7	28	NA	26
8	28	NA	26
9	28	28	26
10	28	28	26
11	26	28	24
12	26	28	24
14	26	28	24
16	24	28	22
18	24	28	22
20	24	28	22
22	24	28	22
24	24	28	22

${ }^{1}$ SMACNA is the Sheet Metal and Air Conditioning Contractors National Association.
${ }^{2}$ McGill AirFlow double-wall, round duct and ungasketed fittings are available in diameters of 3 through 90 inches in many gauges of various materials. See the Double-Wall Round Duct and Fittings Dimensions booklet for the full range of available sizes.
${ }^{3}$ Standard lengths of round UNI-SEAL and UNI-RIB duct are 10, 12, and 20 feet; longer lengths are available on special order.
${ }^{4}$ The rating of +10 in . wg for Spiral Lockseam with Standing Rib Duct is based on McGill AirFlow laboratory testing.
${ }^{5}$ Available in galvanized, paintable galvanized, and SilverGuard ${ }^{\top \mathrm{M}}$ precoated ductwork with antimicrobial.
${ }_{7}^{6}$ Standard insulation density is 1.0 pcf.
${ }^{7}$ Standard inner shell gauges are 28 gauge spiral 3-8 inch diameter and 28 gauge ribbed spiral 9-24 inch diameter.

Duct Construction

Fitting Construction

Solid Welded	Spot Welded, Tack Welded or Mechanically Fastened Sealed with United Duct Sealer ${ }^{\text {TM }}$ (Water Based)
Standing Lockseam	Resistance Welded Lap Seam
Sealed with United Duct Sealer ${ }^{\text {TM }}$ (Water Based)	 Sealed with United Duct Sealer ${ }^{\text {TM }}$ (Water Based)

Dimensioning:

All alphanumeric dimensions are in inches; all angles are in degrees.

A	-	Main barrel inlet diameter
B	-	Main barrel outlet diameter
C or D	-	Branch tap diameter (Note: On tee and lateral fittings with two taps, C is the branch closest to the inlet of the fitting. On cross fittings, C is the larger of the two taps.)
R	-	Centerline radius
S	-	Slip-fit dimension of a fitting
$\begin{aligned} & \text { F, H, J, L, Q, } \\ & \mathbf{V}, \mathbf{Z}, \mathbf{m}, \boldsymbol{\alpha} \end{aligned}$	-	Miscellaneous dimensions (refer to specific drawings)
θ or Φ	-	Angular measurements (refer to specific drawings)
\#	-	Number of elbow gores
t	-	Insulation/liner thickness

Designations:

McGill AirFlow uses a designation system that simplifies product nomenclature. Gasketed fitting products can be accurately identified using a concise alphanumeric designator. Each character in the designation defines a characteristic of the product.

Example: KROPT refers to a double-wall (K), round (R), 10 in . wg positive pressure class (0), straight tee tap (PT).
$1{ }^{\text {st }}$ Character: Wall Configuration - KROPT
$K=$ Double-wall
$2^{\text {nd }}$ Character: Shape - KROPT
R = Round
$3^{\text {rd }}$ Character: Pressure Class - KROPT
$0=+4$ to +10 in . wg
$\mathbf{S}=$ standard gauge of product type
$4^{\text {th }}$ and Subsequent Characters: Product Type - KROPT
PT $=$ Straight Tee Tap (90^{E} branch tap)

General Notes:

- Dimensions other than diameters are held within a $\pm 1 / 4$-inch tolerance.
- Given diameters of double-wall, round fittings are sized to slip fit into the same diameter of double-wall, round duct. Double wall gasketed fittings will have a projecting inner liner slip fit section as shown below.

- Galvanized steel meets ASTM Numbers A653 and A924
- Unless otherwise specified fittings, will be solid inner liner and duct will be perforated inner liner.
- Unless ordered otherwise, the branch taps of laterals, crosses, and lateral crosses are installed at standard angles to the fittings' bodies and to each other, as shown in the following drawings:
LATERAL

For all:

Laterals - θ standard $=45^{E}$
Straight Crosses $-\theta$ standard $=90^{\mathrm{E}}, \Phi$ standard $=180^{\mathrm{E}}$
Lateral Crosses $-\theta$ standard $=45^{\mathrm{E}}, \Phi$ standard $=180^{\mathrm{E}}$
Y-Branches $-\theta$ standard $=90^{\mathrm{E}}$
Note: Φ is the included angle between taps as viewed in cross section (standard is 180^{E}). When ordering fittings of nonstandard Φ, please include an end view sketch.

Installation:

- Make sure the end of the duct or gasketed fitting is not damaged.
- Insert the extended inner collar of the fitting into the liner of the adjacent duct section.
- Insert the outer gasketed collar of the fitting into the spiral duct up to the fitting bead. Turning the fitting slightly as it is inserted may make installation easier.
- Secure the fitting to the duct with self-tapping screws uniformly located around the circumference according to SMACNA recommendations. Use at least one screw for every 15 inches of circumference with a minimum of three screws for 14-inch or smaller diameters.
- The following chart illustrates some typical gasketed assemblies:
Coupling
- The following figure illustrates gasketed fittings assembled to ductwork with a manifolded tap:

ACOUSTI - K27 ${ }^{\circledR}$ DUCT
(Spiral lockseam)

Designation:
KROSD

Diameters:

3-inch minimum inner liner
84 -inch maximum outer shell

UNI-RIB - K27 ${ }^{\circledR}$ DUCT
(Spiral lockseam with a standing rib between the seams)

Designation:

KRSRD
Diameters:
3-inch minimum inner liner
9 -inch minimum outer shell
60 -inch maximum outer shell

GORED ELBOW

Outer Shell Diameter \#22 inches

Outer Shell Diameter = $\mathbf{2 4}$ inches

Designation:
KROE\#- θ

Where:

$\boldsymbol{\theta}$	Number of gores (\#)
$0-35^{\mathrm{E}}$	2
$36-71^{\mathrm{E}}$	3
$72-90^{\mathrm{E}}$	5

For elbows where θ exceeds 90^{E}, add one gore for each additional 18^{E} or fraction thereof.

Dimensions:

$R-1.5(A+2 t)$

Note:

1. McGill AirFlow UNI-SEAM (standing seam) construction will be used on the following available sizes: 9 - through 12inches in 1-inch increments, 14 - through 24 -inches in 2-inch increments.

Gasket

2. Nonstandard elbows with a different centerline radius and a different number of gores are available.
3. The outer shell for 1.5 centerline radius elbows may be made of pleated or die stamped construction, depending on diameter and pressure class.

MITERED 90^{E} ELBOW WITH VANES

Designation:
KR0EMV-90
KR0EM-90 (without vanes)
Dimensions:

A (inches)	Number of vanes (\#)
$3-9$	2
$10-14$	3
$15-19$	4
$20-24$	5

MITERED $45^{\text {E }}$ ELBOW
Designation:
KR0EM-45

Designation:
KR0ET3-90
Dimensions:

STRAIGHT TEE

Designation:
KROT
Dimensions:
$V=C+2+2 t$
Maximum $\mathrm{C}=\mathrm{A}$

CONICAL TEE

Designation:

KROTC
Dimensions:
$V=C+4+2 t$
Maximum $\mathrm{C}=\mathrm{A}-2$

LO-LOSS ${ }^{\text {TM }}$ TEE

Designation:

KROTL

Dimensions:

$V=C+H+11 / 2+2 t$
$J=C+2$ (for $C \# A-2)$
$J=C($ for $C>A-2)$
Maximum $C=A$

Available Tap (C) Sizes (inches)	\mathbf{H} (inches)
$3-8$	$41 / 2$
$9-14$	$71 / 2$
$16-24$	$101 / 2$

TANGENTIAL TEE

Designation:

KROTT

Dimensions:
$\mathrm{V}=\mathrm{C}+2+2 \mathrm{t}$
Maximum $\mathrm{C}=\mathrm{A}$

REDUCING STRAIGHT TEE

Designation:
KROTR
Dimensions:
$\mathrm{V}=\mathrm{C}+2+2 \mathrm{t}$
Maximum $\mathrm{C}=\mathrm{A}$
A-B (1-inch minimum, 12-inch maximum)

REDUCING CONICAL TEE

Designation:

KROTCR
Dimensions:
$\mathrm{V}=\mathrm{C}+4+2 \mathrm{t}$
Maximum $\mathrm{C}=\mathrm{A}-2$
A - B (1-inch minimum, 12-inch maximum)

TEES

Designation:
 KROTLR

Dimensions:

$\mathrm{V}=\mathrm{C}+\mathrm{H}+11 / 2+2 \mathrm{t}$
$\mathrm{J}=\mathrm{C}+2$ (for C \# A - 2)
$J=C($ for $C>A-2)$
Maximum $\mathrm{C}=\mathrm{A}$
A-B (1-inch minimum 12-inch maximum)

Available Tap (C) Sizes (inches)	\mathbf{H} (inches)
$3-9$	$41 / 2$
$9-14$	$71 / 2$
$16-24$	$101 / 2$

reducing bullhead tee with vanes

Designation:
KROTBVR
KROTBR (without vanes)
Dimensions:
$V=A+2+2 t$
A-C or A-D
(1-inch minimum or 12-inch maximum)

A (inches)	Number of Vanes (\#)
$3-6$	1
$7-9$	3
$10-24$	5

Designation:
KROYR
(- θ if θ...90E)
Dimensions:
$H=\frac{A+2 t}{2 \tan \frac{\theta}{2}}+1$
$m=\frac{A+2 t}{2} \tan \frac{\theta}{4}$

A-C or A-D
(1-inch minimum or 12-inch maximum)
Maximum C or $\mathrm{D}=\mathrm{A}$

Y-BRANCHES McGill

Designation:
KROTX
(Φ if Φ... 180°)
Dimensions:
$V=C+2$
Maximum C or $\mathrm{D}=\mathrm{A}$

Designation:
KROTXC
(Φ if $\Phi \ldots 0^{\circ}$)
Dimensions:
$\mathrm{V}=\mathrm{C}+4+2 \mathrm{t}$
Maximum C or $\mathrm{D}=\mathrm{A}-2$

LO-LOSS ${ }^{\text {TM }} 90^{E}$ CROSS

Designation:
KROTXL
(Φ if $\Phi \ldots 180^{\circ}$)
Dimensions:

REDUCING LO-LOSS ${ }^{\text {TM }} 9 \mathbf{0}^{\text {E }}$ CROSS

Designation:
KROTXLR
(Φ if $\Phi \ldots 0^{\circ}$)
Dimensions:

$$
\begin{aligned}
& \mathrm{V}=\mathrm{C}+\mathrm{H}_{\mathrm{C}}+2+2 \mathrm{t} \\
& \left.\mathrm{~J}_{\mathrm{C}}=\mathrm{C}+2 \text { (for } \mathrm{C} \text { \# } \mathrm{A}-2\right) \\
& \mathrm{J}_{\mathrm{C}}=\mathrm{C}(\text { for } \mathrm{C}>\mathrm{A}-2) \\
& \mathrm{J}_{\mathrm{D}}=\mathrm{D}+2
\end{aligned}
$$

Maximum $\mathrm{C}=\mathrm{A}$
A - B (1-inch minimum, 12-inch maximum)

C or D Sizes (inches)	\mathbf{H}_{C} or H_{D} (inches)
$3-9$	$41 / 2$
$9-14$	$71 / 2$
$16-24$	$101 / 2$

REDUCING STRAIGHT CROSS

Designation:
KROTXR
(Φ if Φ... 180°)
Dimensions:
$\mathrm{V}=\mathrm{C}+2+2 \mathrm{t}$
Maximum C or $\mathrm{D}=\mathrm{A}$
A-B (1-inch minimum, 12-inch maximum)

REDUCING CONICAL CROSS

Gasket

Designation:
KROTXCR
(Φ if $\Phi \ldots 0^{\circ}$)

Dimensions:

$\mathrm{V}=\mathrm{C}+4+2 \mathrm{t}$
Maximum C or $\mathrm{D}=\mathrm{A}-2$
A-B (1-inch minimum, 12-inch maximum)

ECCENTRIC REDUCER

Designation:
KRORE

CONCENTRIC REDUCER

LATERALS

STRAIGHT LATERAL

Designation:

KROL
(- θ if θ...45E)

Dimensions:

$$
\begin{aligned}
& V=\frac{C+2 t}{\sin \theta}+2 \\
& Q=\frac{A+2 t}{2 \tan \theta}+\frac{C+2 t}{2 \sin \theta}+1
\end{aligned}
$$

$$
H=\frac{A+2 t}{2 \sin \theta}+\frac{C+2 t}{2 \tan \theta}+2
$$

Maximum $\mathrm{C}=\mathrm{A}$

REDUCING LATERAL

Designation:

KROLR
(- θ if θ...45E)

Dimensions:

$V=\frac{C+2 t}{\sin \theta}+2$
$Q=\frac{A+2 t}{2 \tan \theta}+\frac{C+2 t}{2 \sin \theta}+1$
$H=\frac{A+2 t}{2 \sin \theta}+\frac{C+2 t}{2 \tan \theta}+2$
Maximum C $=\mathrm{A}$
A-B (1-inch minimum 12-inch maximum)

SADDLE CONICAL TEE TAP
Designation:
KROPTCS

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

Maximum $\mathrm{C}=\mathrm{A}-2$

CONTOUR FLANGED LO-LOSS ${ }^{\text {TM }}$ TEE TAP

Designation:
 KROPTL

Dimensions:

$$
\begin{aligned}
& J=C+2+2 t(f o r ~ C ~ \# ~ A ~-~ 2) ~ \\
& J=C+2 t(f o r ~ C>A-2) \\
& \text { Maximum C = A }
\end{aligned}
$$

Available Tap Outer Wall (C) Sizes (inches)	H (inches)
4,6 , and 8	$41 / 2$
10,12 , and 14	$71 / 2$
$16,18,20,22$,and 24	$101 / 2$

$1 / 2$ "

SADDLE LO-LOSS ${ }^{\text {TM }}$ TEE TAP

Designation:

KROPTLS

Dimensions:
$\mathrm{J}=\mathrm{C}+2+2 \mathrm{t}$ (for C \#A - 2)
$J=C+2 t(f o r ~ C>A-2)$
Maximum $\mathrm{C}=\mathrm{A}$

Available Tap Outer Wall (C) Sizes (inches)	H (inches)
4,6 , and 8	$41 / 2$
10,12, and 14	$71 / 2$
$16,18,20,22$, and 24	$101 / 2$

CONTOURED FLANGED LATERAL TAPS

Centerline of duct body

Designation:
KROPL
($-\theta$ if θ...45)

Dimensions:

Specify diameter of duct, to which tap will be attached, as A
$H=\frac{A}{2 \sin \theta}+\frac{C}{2 \tan \theta}+2$

Maximum C = A
$1 / 2 "$

SADDLE LATERAL TAPS

Designation:

KROPLS
($-\theta$ if $\theta \ldots 45^{E}$)

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

$$
H=\frac{A}{2 \sin \theta}+\frac{C}{2 \tan \theta}+2
$$

Maximum $C=A$

TAPS OFF FLAT SURFACE

STRAIGHT TAP OFF FLAT SURFACE

Gasket

Designation:
KROPT

CONICAL TAP OFF FLAT SURFACE
Designation:
KROPTC

OFFSET and SQUARE-TO-ROUND
 McGill

SQUARE-TO-ROUND

Designation:
KR0QR
Dimensions:
$V=12,24,36$, or 48
A = Major axis of rectangular side
a = Minor axis of rectangular side

COUPLING

 Designation:
 KROC

END PLUG

Designation: KR0ENPL

McGill AinfFlow ณนc

An enterprise of United McGill Corporation Founded in 1951

Corporate Headquarters

One Mission Park
Groveport, Ohio 43125-1149
614/836-9981, Fax: 614/836-9843
E-mail: marketing @ mcgillairflow.com
Web site: mcgillairflow.com

