

An enterprise of United McGill Corporation - Founded in 1951

One Mission Park Groveport, Ohio 43125-1149 614/836-9981, Fax: 614/836-9843 E-mail: marketing@mcgillairflow.com Web site: http://www.mcgillairflow.com

Acousti-K27[®] Double-Wall Round UNI-GASKET[™] Fitting and Related Product Dimensions

McGill AirFlow Corporation offers UNI-GASKET fittings featuring an EPDM rubber gasket that provides a reliable, airtight seal. Testing has shown that UNI-GASKET fittings meet or exceed SMACNA¹ Class 3 for leakage at - 20 in. wg to + 20 in. wg. Each fitting is constructed of an inner liner¹ surrounded by a layer of fiberglass insulation and covered by a solid metal pressure shell. The insulation is available in 1-, 2-, and 3-inch standard thicknesses and a maximum of 1.5 pounds per cubic foot (pcf) density⁶ to meet the thermal and acoustical performance requirements. The galvanized steel construction⁵ meets SMACNA's 10 in. wg positive pressure standards². UNI-GASKET fittings are compatible and available with all of McGill AirFlow's round, double-wall duct types in 1-inch increments for 5- through 12-inch diameters outer shells and in 2-inch increments in 14- through 24-inch outer shell diameters.

Table 1 - Positive Pressure, Double-wall, Round Duct and Fitting, Outer Shell Galvanized Steel Gauges

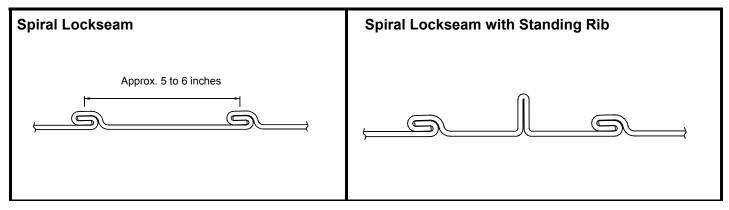
Diameters (inches)	UNI-SEAL™ Spiral Lockseam Duct³	UNI-RIB [®] Spiral Lockseam with Standing Rib Duct ^{3,4}	UNI-GASKET™ Fittings
3	28	NA	26
4	28	NA	26
5	28	NA	26
6	28	NA	26
7	28	NA	26
8	28	NA	26
9	28	28	26
10	28	28	26
11	26	28	24
12	26	28	24
14	26	28	24
16	24	28	22
18	24	28	22
20	24	28	22
22	24	28	22
24	24	28	22

¹ SMACNA is the Sheet Metal and Air Conditioning Contractors National Association.

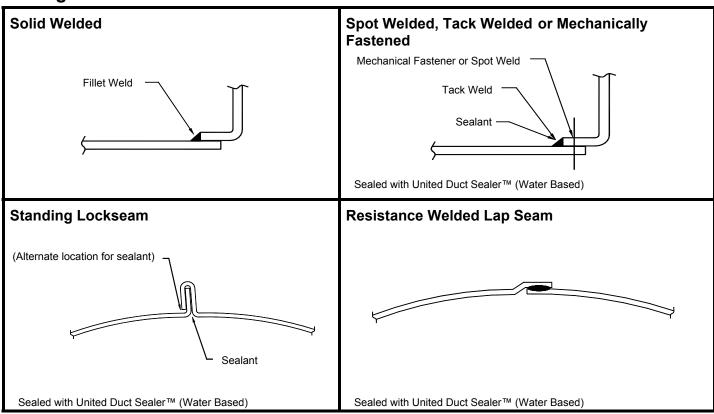
McGill AirFlow double-wall, round duct and ungasketed fittings are available in diameters of 3 through 90 inches in many gauges of various materials. See the Double-Wall Round Duct and Fittings Dimensions booklet for the full range of available sizes.

³ Standard lengths of round UNI-SEAL and UNI-RIB duct are 10, 12, and 20 feet; longer lengths are available on special order

⁴ The rating of +10 in. wg for Spiral Lockseam with Standing Rib Duct is based on McGill AirFlow laboratory testing.


⁵ Available in galvanized, paintable galvanized, and SilverGuard[™] precoated ductwork with antimicrobial.

⁶ Standard insulation density is 1.0 pcf.


Standard inner shell gauges are 28 gauge spiral 3-8 inch diameter and 28 gauge ribbed spiral 9-24 inch diameter.

Duct Construction

Fitting Construction

Dimensioning:

All alphanumeric dimensions are in inches; all angles are in degrees.

A - Main barrel inlet diameterB - Main barrel outlet diameter

C or D - Branch tap diameter (Note: On tee and lateral fittings with two taps, C is the branch closest to the

inlet of the fitting. On cross fittings, C is the larger of the two taps.)

R - Centerline radius

S - Slip-fit dimension of a fitting

F, H, J, L, Q, - Miscellaneous dimensions (refer to specific drawings)

V, Z, m, α

 θ or Φ - Angular measurements (refer to specific drawings)

- Number of elbow gorest - Insulation/liner thickness

Designations:

McGill AirFlow uses a designation system that simplifies product nomenclature. Gasketed fitting products can be accurately identified using a concise alphanumeric designator. Each character in the designation defines a characteristic of the product.

Example: KR0PT refers to a double-wall (K), round (R), 10 in. wg positive pressure class (0), straight tee tap (PT).

1st Character: Wall Configuration - KR0PT

K = Double-wall

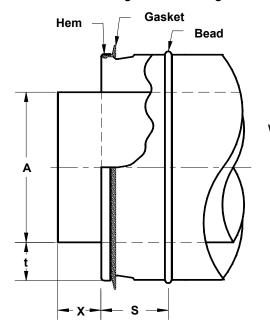
2nd Character: **Shape - KR**0PT

R = Round

3rd Character: Pressure Class - KR0PT

0 = +4 to +10 in. wg

S = standard gauge of product type


4th and Subsequent Characters: **Product Type -** KR0**PT**

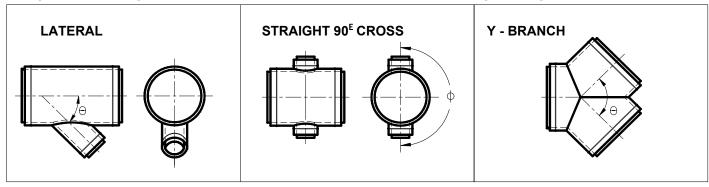
PT = Straight Tee Tap (90^E branch tap)

General Notes:

- Dimensions other than diameters are held within a ± 1/4-inch tolerance.
- Given diameters of double-wall, round fittings are sized to slip fit into the same diameter of double-wall, round duct. Double wall gasketed fittings will have a projecting inner liner slip fit section as shown below.

Where:

 $S = 1 \frac{1}{2}$ inches for outer shell diameters # 8 inches


S = 1 % inches for outer shell diameters \$ 9 inches

X = 1 inch for inside shell diameters # 7 inches

X = 2 inches for inside shell diameters \$ 8 inches

t = insulation wall thickness

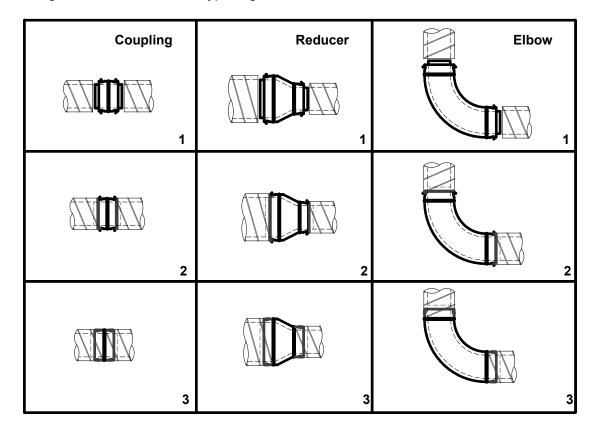
- Galvanized steel meets ASTM Numbers A653 and A924
- Unless otherwise specified fittings, will be solid inner liner and duct will be perforated inner liner.
- Unless ordered otherwise, the branch taps of laterals, crosses, and lateral crosses are installed at standard angles to the fittings' bodies and to each other, as shown in the following drawings:

For all:

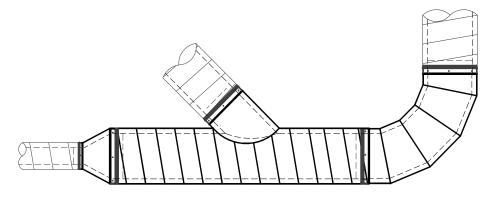
Laterals - θ standard = 45^{E}

Straight Crosses - θ standard = 90^{E} , Φ standard = 180^{E}

Lateral Crosses - θ standard = 45^{E} , Φ standard = 180^{E}

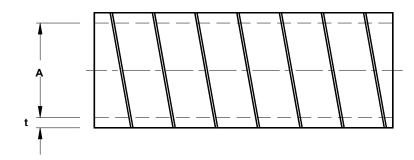

Y-Branches - θ standard = 90^{E}

Note: Φ is the included angle between taps as viewed in cross section (standard is 180^E). When ordering fittings of nonstandard Φ , please include an end view sketch.



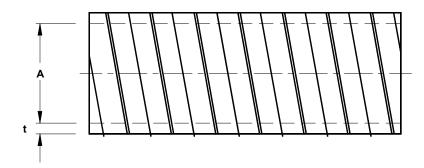
Installation:

- Make sure the end of the duct or gasketed fitting is not damaged.
- Insert the extended inner collar of the fitting into the liner of the adjacent duct section.
- Insert the outer gasketed collar of the fitting into the spiral duct up to the fitting bead. Turning the fitting slightly as it is inserted may make installation easier.
- Secure the fitting to the duct with self-tapping screws uniformly located around the circumference according
 to SMACNA recommendations. Use at least one screw for every 15 inches of circumference with a minimum
 of three screws for 14-inch or smaller diameters.
- The following chart illustrates some typical gasketed assemblies:


• The following figure illustrates gasketed fittings assembled to ductwork with a manifolded tap:

DUCT

ACOUSTI - K27® DUCT (Spiral lockseam)

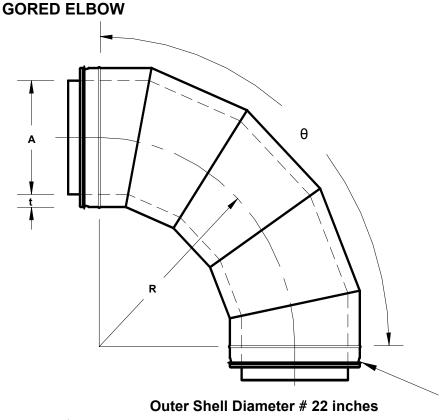

Designation: KR0SD

Diameters:

3-inch minimum inner liner 84-inch maximum outer shell

UNI-RIB - K27® DUCT

(Spiral lockseam with a standing rib between the seams)



Designation: KRSRD

Diameters:

3-inch minimum inner liner 9-inch minimum outer shell 60-inch maximum outer shell

ELBOWS

Designation: KR0E#-θ

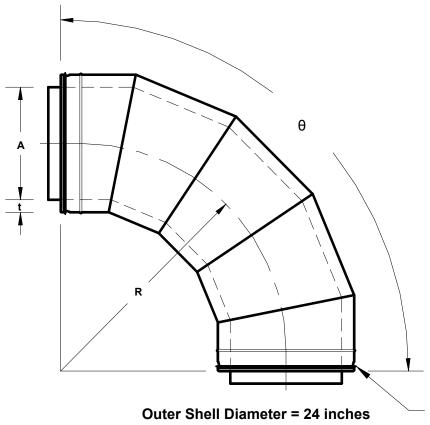
Where:

θ	Number of gores (#)
0-35 ^E	2
36-71 ^E	3
72-90 ^E	5

For elbows where θ exceeds 90^{E} , add one gore for each additional 18^{E} or fraction thereof.

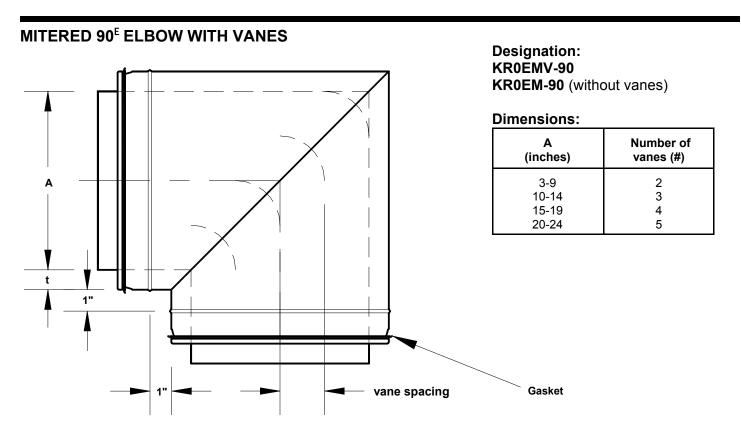
Dimensions:

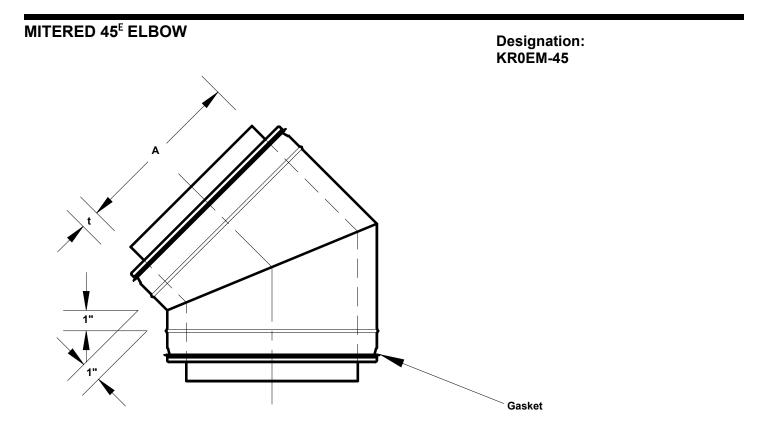
R - 1.5 (A+2t)


Note:

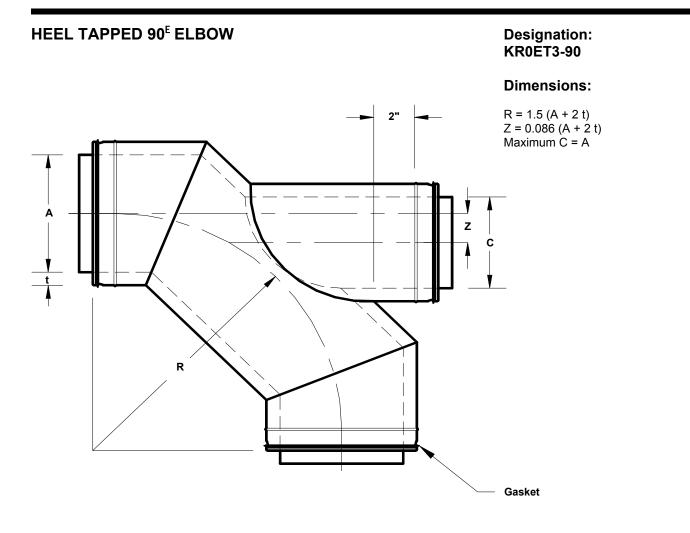
 McGill AirFlow UNI-SEAM (standing seam) construction will be used on the following available sizes: 9- through 12inches in 1-inch increments, 14- through 24-inches in 2-inch increments.

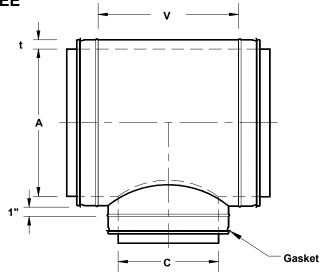
Gasket 2.


Gasket


- Nonstandard elbows with a different centerline radius and a different number of gores are available.
- The outer shell for 1.5 centerline radius elbows may be made of pleated or die stamped construction, depending on diameter and pressure class.

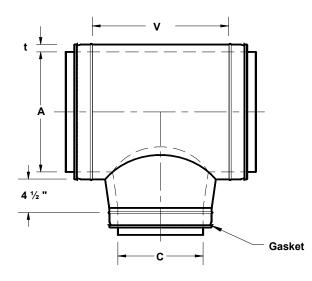
ELBOWS





ELBOWS

STRAIGHT TEE

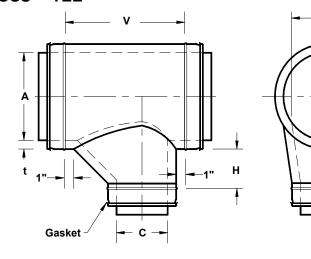


Designation: KR0T

Dimensions:

V = C + 2 + 2tMaximum C = A

CONICAL TEE



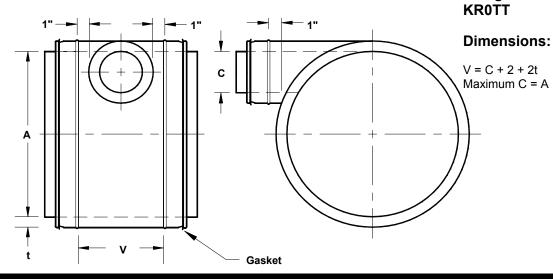
Designation: KR0TC

Dimensions:

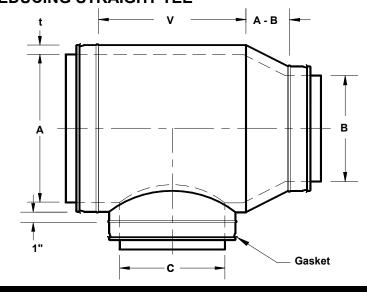
V = C + 4 + 2tMaximum C = A - 2

LO-LOSS™ TEE

Designation: KR0TL


Dimensions:

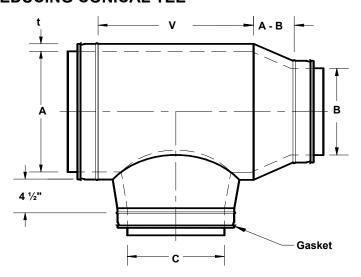
 $V = C + H + 1\frac{1}{2} + 2t$ J = C + 2 (for C # A - 2) J = C (for C > A - 2)Maximum C = A


Available Tap (C) Sizes (inches)	H (inches)
3-8 9-14	4½ 7½
16- 24	10½

Designation:

TANGENTIAL TEE

REDUCING STRAIGHT TEE

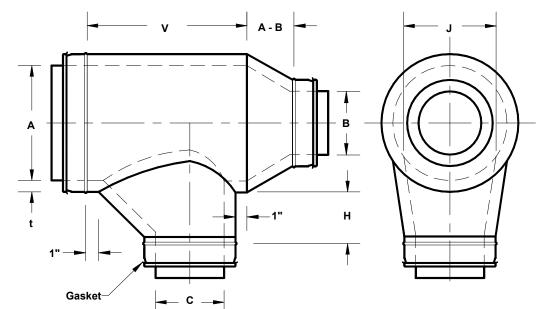

Designation:

Dimensions:

KR0TR

V = C + 2 + 2t Maximum C = A A - B (1-inch minimum, 12-inch maximum)

REDUCING CONICAL TEE

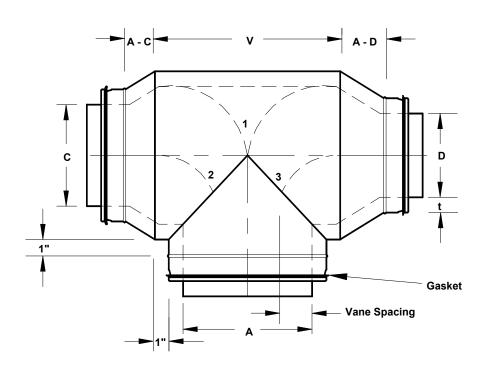

Designation: KR0TCR

Dimensions:

V = C + 4 + 2t Maximum C = A - 2 A - B (1-inch minimum, 12-inch maximum)

TEES

REDUCING LO-LOSS™ TEE


Designation: KR0TLR

Dimensions:

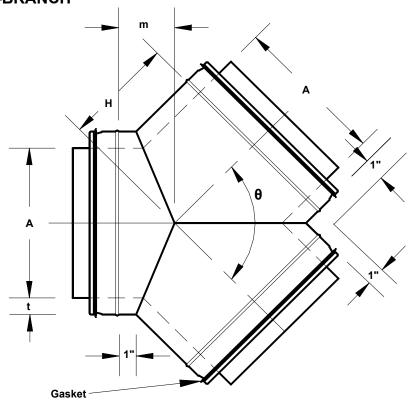
 $V = C + H + 1\frac{1}{2} + 2t$ J = C + 2 (for C # A - 2) J = C (for C > A - 2) Maximum C = A A - B (1-inch minimum 12-inch maximum)

Available Tap (C) Sizes (inches)	H (inches)
3-9 9-14	4½ 7½
16- 24	10½

REDUCING BULLHEAD TEE WITH VANES

Designation: KR0TBVR KR0TBR (without vanes)

Dimensions:

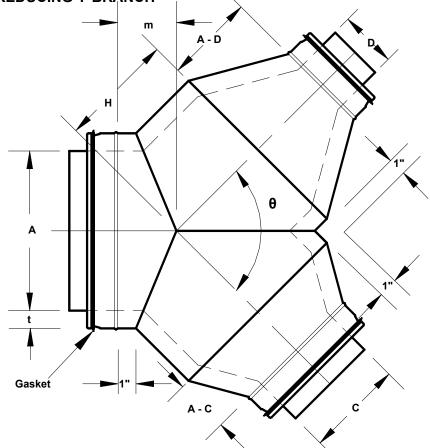

V = A + 2 + 2t

A - C or A - D (1-inch minimum or 12-inch maximum)

A	Number of
(inches)	Vanes (#)
3-6	1
7-9	3
10-24	5

Y-BRANCHES

Designation: KR0Y


 $(-\theta \text{ if }\theta \dots 90E)$

Dimensions:

$$H = \frac{A + 2t}{2 \tan \frac{\theta}{2}} + 1$$

$$m=\frac{A+2t}{2}tan\frac{\theta}{4}$$

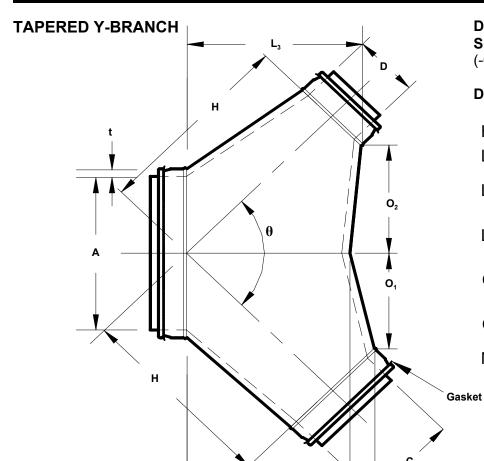
REDUCING Y-BRANCH

Designation: KR0YR

 $(-\theta \text{ if } \theta \dots 90E)$

Dimensions:

$$H = \frac{A + 2t}{2\tan\frac{\theta}{2}} + 1$$


$$m = \frac{A + 2t}{2} tan \frac{\theta}{4}$$

A - C or A - D

(1-inch minimum or 12-inch maximum)

Maximum C or D = A

Y-BRANCHES

Designation: SR0YP

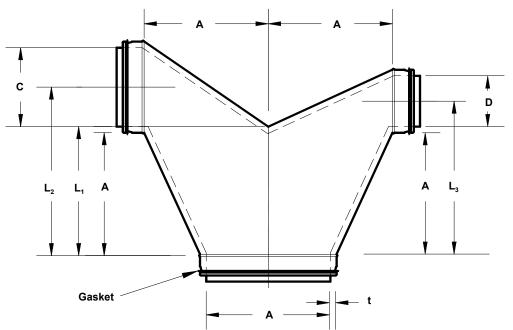
(-θ if θ ...90E)

Dimensions:

$$H = 1.25A$$

$$L_1 = A + t$$

$$L_2 = [Hx\cos\frac{\theta}{2}] + [\frac{C}{2}x\sin\frac{\theta}{2}]$$


$$L_3 = [Hx\cos\frac{\theta}{2}] + [\frac{D}{2}x\sin\frac{\theta}{2}]$$

$$O_1 = [Hx \sin \frac{\theta}{2}] - [\frac{C}{2}x \cos \frac{\theta}{2}]$$

$$O_2 = [Hx \sin \frac{\theta}{2}] - [\frac{D}{2}x \cos \frac{\theta}{2}]$$

Maximum C or D = A

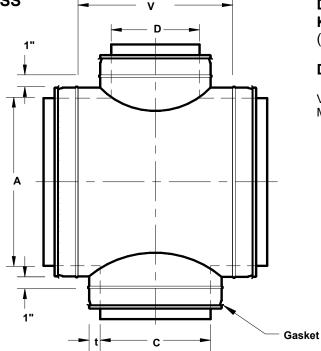
VEE FITTING

Designation:

SR0VE SR0VER

(reducing shown)

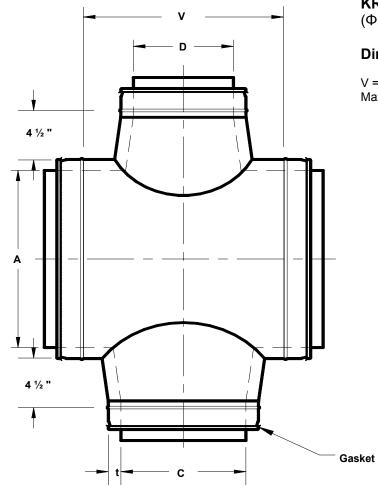
Dimensions:


$$L_1 = A + t$$

$$L_2 = L_1 + \frac{C}{2}$$

$$L_3 = L_1 + \frac{D}{2}$$

Maximum C or D = A

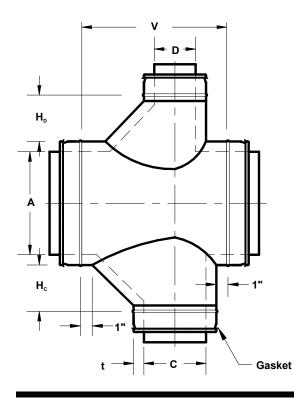

Designation: KR0TX

(Φ if Φ ...180°)

Dimensions:

V = C + 2Maximum C or D= A

CONICAL 90^E CROSS


Designation: KR0TXC

(Φ if Φ ...180°)

Dimensions:

V = C + 4 + 2tMaximum C or D = A - 2

LO-LOSS™ 90^E CROSS

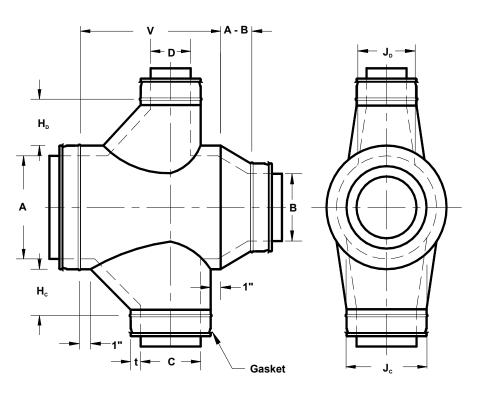
Designation: KR0TXL (Φ if Φ ...180°)

Dimensions:

$$V = C + H_C + 2 + 2t$$

$$J_C = C + 2 \text{ (for C # A - 2)}$$

$$J_C = C \text{ (for C > A - 2)}$$


$$J_D = D + 2$$

$$J_D = D \text{ (for D > A - 2)}$$

Maximum C = A

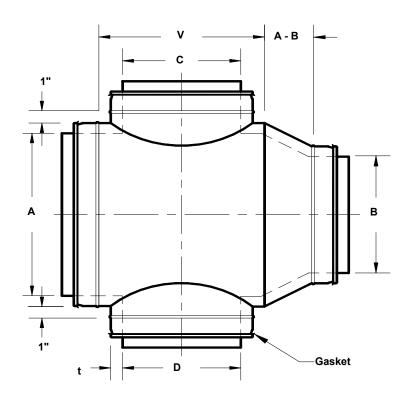
C or D Sizes	H _c or H _D
(inches)	(inches)
3-9	4½
9-14	7½
16- 24	10½

REDUCING LO-LOSS™ 90^E CROSS

Designation: KR0TXLR

(Φ if Φ ...180°)

Dimensions:


$$V = C + H_C + 2 + 2t$$

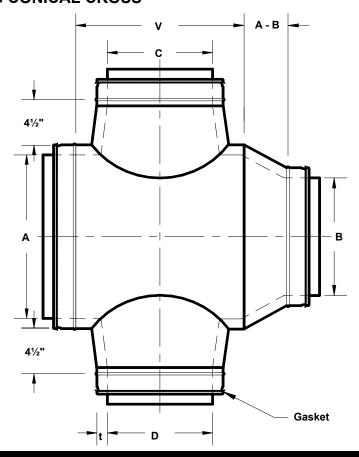
 $J_C = C + 2 \text{ (for C # A - 2)}$
 $J_C = C \text{ (for C > A - 2)}$
 $J_D = D + 2$

Maximum C = A

A - B (1-inch minimum, 12-inch maximum)

C or D Sizes (inches)	H _c or H _D (inches)
3-9	4½
9-14	7½
16- 24	10%

REDUCING STRAIGHT CROSS


Designation: KR0TXR

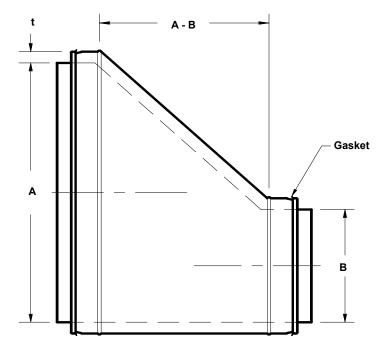
(Φ if Φ ...180°)

Dimensions:

V = C + 2 + 2t Maximum C or D = A A - B (1-inch minimum, 12-inch maximum)

REDUCING CONICAL CROSS

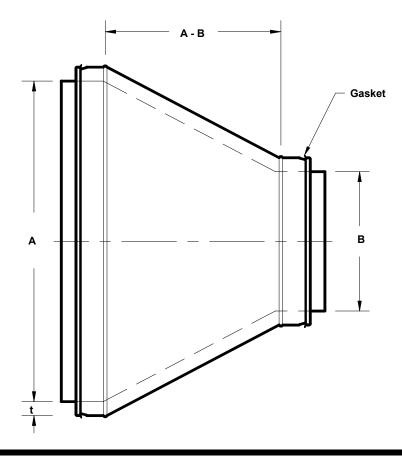
Designation: KR0TXCR


(Φ if Φ ...180°)

Dimensions:

V = C + 4 + 2t Maximum C or D = A - 2 A - B (1-inch minimum, 12-inch maximum)

ECCENTRIC REDUCER

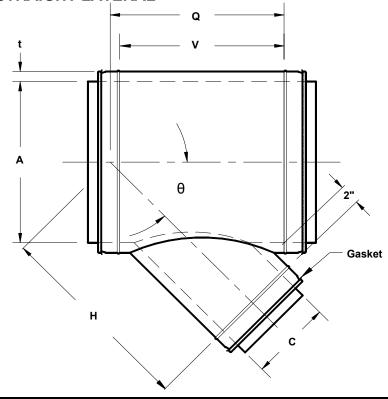


Designation: KR0ŘE

Dimensions:

A - B (4-inch minimum 12-inch maximum)

CONCENTRIC REDUCER


Designation: KR0R

Dimensions:

A - B (1-inch minimum 12-inch maximum)

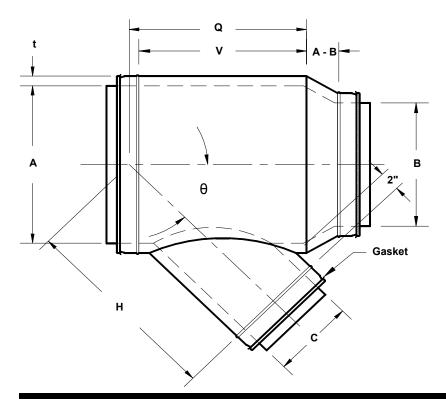
LATERALS

STRAIGHT LATERAL

Designation: KR0L

(-θ if θ ...45E)

Dimensions:


$$V = \frac{C + 2t}{\sin \theta} + 2$$

$$Q = \frac{A + 2t}{2 \tan \theta} + \frac{C + 2t}{2 \sin \theta} + 1$$

$$H = \frac{A+2t}{2\sin\theta} + \frac{C+2t}{2\tan\theta} + 2$$

Maximum C = A

REDUCING LATERAL

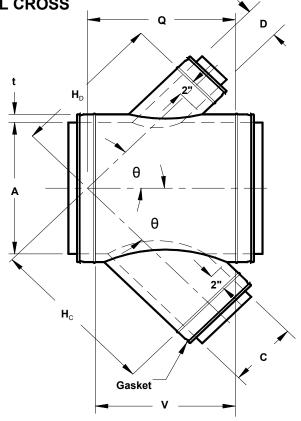
Designation: KR0LR

 $(-\theta \text{ if }\theta ...45E)$

Dimensions:

$$V = \frac{C + 2t}{\sin \theta} + 2$$

$$Q = \frac{A + 2t}{2 \tan \theta} + \frac{C + 2t}{2 \sin \theta} + 1$$


$$H = \frac{A + 2t}{2\sin\theta} + \frac{C + 2t}{2\tan\theta} + 2$$

Maximum C = A

A - B (1-inch minimum 12-inch maximum)

LATERALS

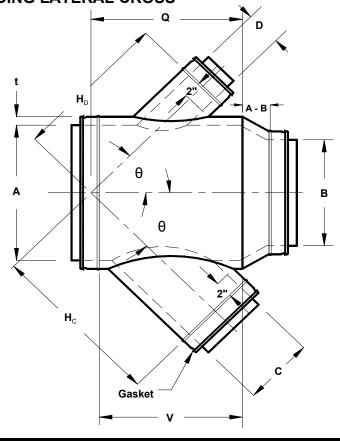
Designation:

KR0LX

(- θ if θ ...45E, Φ if Φ ...180°)

Dimensions:

$$V = \frac{C + 2t}{\sin \theta} + 2$$


$$Q = \frac{A + 2t}{2 \tan \theta} + \frac{C + 2t}{2 \sin \theta} + 1$$

$$Hc = \frac{A+2t}{2\sin\theta} + \frac{C+2t}{2\tan\theta} + 2$$

$$H_D = \frac{A+2t}{2\sin\theta} + \frac{D+2t}{2\tan\theta} + 2$$

Maximum C or D = A

REDUCING LATERAL CROSS

Designation:

KR0LXR

(- θ if θ ...45E, Φ if Φ ...180°)

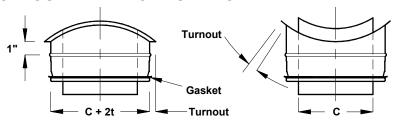
Dimensions:

$$V = \frac{C + 2t}{\sin \theta} + 2$$

$$Q = \frac{A + 2t}{2\tan\theta} + \frac{C + 2t}{2\sin\theta} + 1$$

$$Hc = \frac{A+2t}{2\sin\theta} + \frac{C+2t}{2\tan\theta} + 2$$

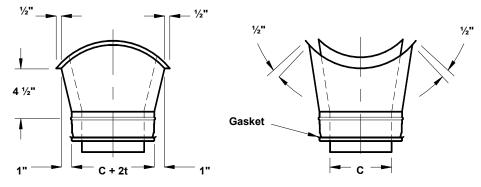
$$H_D = \frac{A+2t}{2\sin\theta} + \frac{D+2t}{2\tan\theta} + 2$$


Maximum C or D = A

A - B (1-inch minimum 12-inch maximum)

TAPS

CONTOURED FLANGED STRAIGHT TEE TAP

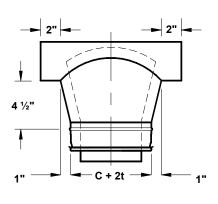

Designation: KR0PT

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

Maximum C = A

CONTOURED FLANGED CONICAL TEE TAP


Designation: KR0PTC

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

Maximum C = A - 2

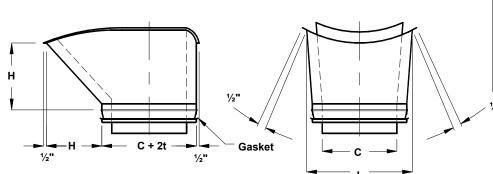
SADDLE CONICAL TEE TAP

2" Gasket

Designation: KR0PTCS

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

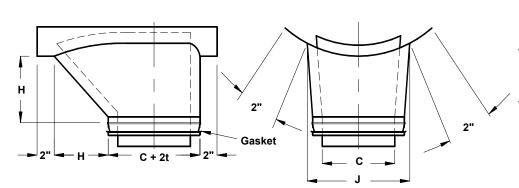

Maximum C = A - 2

CONTOUR FLANGED LO-LOSS™ TEE TAP

Designation: KR0PTL

Dimensions:

J = C + 2 + 2t (for C # A - 2) J = C + 2t (for C > A - 2) Maximum C = A


Available Tap Outer Wall (C) Sizes (inches)	H (inches)
4, 6, and 8	4½
10, 12, and 14	7½
16, 18, 20, 22 and 24	10½

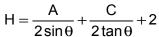
SADDLE LO-LOSS™ TEE TAP

Designation: KR0PTLS

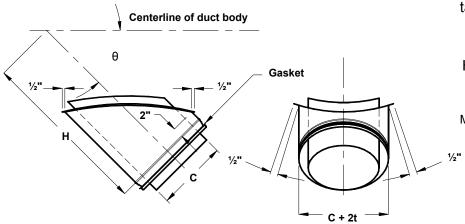
Dimensions:

J = C + 2 + 2t (for C # A - 2) J = C + 2t (for C > A - 2) Maximum C = A

Available Tap Outer Wall (C) Sizes (inches)	H (inches)
4, 6, and 8	4½
10, 12, and 14	7½
16, 18, 20, 22 and 24	10½


CONTOURED FLANGED LATERAL TAPS

Designation: KR0PL


 $(-\theta \text{ if }\theta \dots 45^E)$

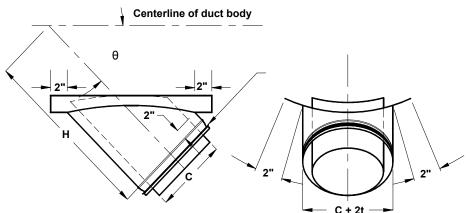
Dimensions:

Specify diameter of duct, to which tap will be attached, as A

Maximum C = A

SADDLE LATERAL TAPS

Designation: KR0PLS


 $(-\theta \text{ if } \theta \dots 45^{E})$

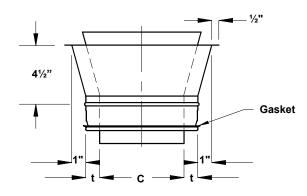
Dimensions:

Specify diameter of duct, to which tap will be attached, as A


$$H = \frac{A}{2\sin\theta} + \frac{C}{2\tan\theta} + 2$$

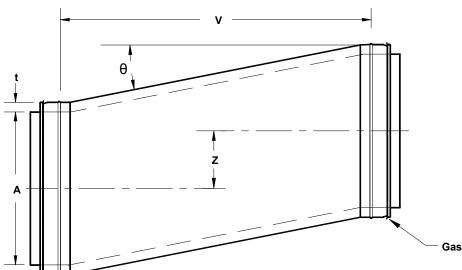
Maximum C = A

TAPS OFF FLAT SURFACE


STRAIGHT TAP OFF FLAT SURFACE

Designation: KR0PT

CONICAL TAP OFF FLAT SURFACE


Designation: KR0PTC

OFFSET and SQUARE-TO-ROUND

Designation: KR0Z

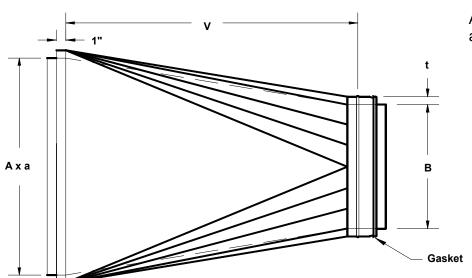
Dimensions:

V = 2 (A + 2t)

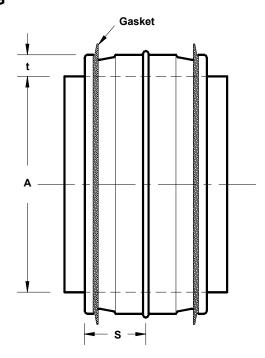
Z = Must be specified

Note: Z should not exceed 0.75 A or angle be larger than 60E. If larger, use fabricated elbows and a straight length of duct.

Gasket

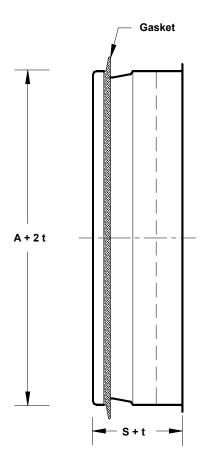

SQUARE-TO-ROUND

Designation: KR0QR


Dimensions:

V = 12, 24, 36, or 48

A = Major axis of rectangular side a = Minor axis of rectangular side



COUPLING

Designation: KR0C

END PLUG

Designation: KR0ENPL

McGil AirFlow LLG

An enterprise of United McGill Corporation — Founded in 1951

Corporate Headquarters

One Mission Park Groveport, Ohio 43125-1149 614/836-9981, Fax: 614/836-9843 E-mail: marketing@mcgillairflow.com

Web site: mcgillairflow.com