An enterprise of United McGill Corporation Founded in 1951

One Mission Park
Groveport, Ohio 43125-1149
614/836-9981, Fax: 614/836-9843
E-mail: marketing@mcgillairflow.com
Web site: http://www.mcgillairflow.com

Single-Wall Round UNI-GASKET ${ }^{\text {TM }}$ Fitting and Related Product Dimensions

McGill AirFlow Corporation offers UNI-GASKET fittings featuring an EPDM rubber gasket that provides a reliable, airtight seal. Testing has shown that UNI-GASKET fittings meet or exceed SMACNA ${ }^{1}$ Class 3 for leakage at $-20 \mathrm{in} . \mathrm{wg}$ to $+20 \mathrm{in} . \mathrm{wg}$. The galvanized steel construction ${ }^{5}$ meets SMACNA's 10 in . wg positive pressure standards ${ }^{2}$. UNI-GASKET fittings are compatible and available with all of McGill AirFlow's round, single-wall duct types in 1-inch increments for 3-through 12-inch diameters and in 2-inch increments in 14- through 24-inch diameters.

Table 1 - Positive Pressure, Single-wall, Round Duct and Fitting, Galvanized Steel Gauges

Diameters (inches)	UNI-SEAL ${ }^{\text {TM }}$ Spiral 3 ${\text { Lockseam } \text { Duct }^{3}}$	UNI-RIB $^{\circledR}$ Spiral Lockseam with Standing Rib Duct ${ }^{3,4}$	UNI-GASKET $^{\text {TM }}$ Fittings
3	28	NA	26
4	28	NA	26
5	28	NA	26
6	28	NA	26
7	28	NA	26
8	28	NA	26
9	28	28	26
10	28	28	26
11	26	28	24
12	26	28	24
14	26	28	24
16	24	28	22
18	24	28	22
20	24	28	22
22	24	28	22
24	24	28	22

[^0]
Duct Construction

Fitting Construction

Dimensioning:

All alphanumeric dimensions are in inches; all angles are in degrees.

A		Main barrel inlet diameter
B		Main barrel outlet diameter
C or D		Branch tap diameter (Note: On tee and lateral fittings with two taps, C is the branch closest to the inlet of the fitting. On cross fittings, C is the larger of the two taps.)
R	-	Centerline radius
S	-	Slip-fit dimension of a fitting
$\begin{aligned} & \text { F, H, J, L, Q, } \\ & \mathbf{V}, \mathbf{Z}, \mathbf{m}, \mathbf{\alpha} \end{aligned}$	-	Miscellaneous dimensions (refer to specific drawings)
θ or Φ	-	Angular measurements (refer to specific drawings)
\#	-	Number of elbow gores

Designations:

McGill AirFlow uses a designation system that simplifies product nomenclature. Gasketed fitting products can be accurately identified using a concise alphanumeric designator. Each character in the designation defines a characteristic of the product.

Example: SROPT refers to a single-wall (S), round (R), $10 \mathrm{in} . \mathrm{wg}$ positive pressure class (0), straight tee tap (PT).
$1^{\text {st }}$ Character: Wall Configuration - SROPT
$\mathbf{S}=$ Single-wall
$2^{\text {nd }}$ Character: Shape - SROPT
R = Round
$3^{\text {rd }}$ Character: Pressure Class - SROPT
$0=+4$ to $+10 \mathrm{in} . \mathrm{wg}$
$\mathbf{S}=$ standard gauge of product type
$4^{\text {th }}$ and Subsequent Characters: Product Type - SROPT
PT = Straight Tee Tap (90^{E} branch tap)

General Notes:

- Dimensions other than diameters are held within a $\pm 1 / 4$-inch tolerance.

- Galvanized steel meets ASTM Numbers A653 and A924
- Unless ordered otherwise, the branch taps of laterals, crosses, lateral crosses and Y-branches are installed at standard angles to the fittings' bodies and to each other, as shown in the following drawings:

LATERAL

STRAIGHT 90^{E} CROSS

Y-BRANCH

For all:
Laterals $-\theta$ standard $=45^{\mathrm{E}}$
Straight Crosses $-\theta$ standard $=90^{\mathrm{E}}, \Phi$ standard $=180^{\mathrm{E}}$
Lateral Crosses $-\theta$ standard $=45^{\mathrm{E}}, \Phi$ standard $=180^{\mathrm{E}}$
Y - Branch $-\theta$ standard $=90^{\mathrm{E}}$
Note: Φ is the included angle between taps as viewed in cross section (standard is 180^{E}). When ordering fittings of nonstandard Φ, please include an end view sketch.

Installation:

- Make sure the end of the duct or gasketed fitting is not damaged.
- Insert the gasketed fitting into the spiral duct up to the fitting bead. Turning the fitting slightly as it is inserted may make installation easier.
- Secure the fitting to the duct with self-tapping screws uniformly located around the circumference according to SMACNA recommendations. Use at least one screw for every 15 inches of circumference with a minimum of three screws for 14 -inch or smaller diameters.
- The following chart illustrates some typical gasketed assemblies:
Coupling
- The following figure illustrates gasketed fittings assembled to ductwork with a manifolded tap:

UNI-SEAL DUCT

(Spiral lockseam)
1

A

1

Designation: SROSD

Diameters:

3-inch minimum
84-inch maximum

UNI-RIB DUCT

(Spiral lockseam with a standing rib between the seams)

Designation:

 SRSRDDiameters:
9-inch minimum
60-inch maximum

Gasket

PLEATED ELBOW

Designation: SRSEP-90 or SRSEP-45

Dimensions:

R-1.5A

Available Diameters (inches)	
$\boldsymbol{\theta}=\mathbf{4 5}^{\mathrm{E}}$ (inches)	$\boldsymbol{\theta}=90^{\mathrm{E}}$ (inches)
4	4
5	5
6	6
7	7
8	8
10	10
11	11
12	12
14	14
16	NA

GORED ELBOW

Diameter \#22 inches

Designation:

SROE\#-日
Where:

$\boldsymbol{\theta}$	Number of gores (\#)
$0-35^{\mathrm{E}}$	2
$36-71^{\mathrm{E}}$	3
$72-90^{\mathrm{E}}$	5

For elbows where θ exceeds 90^{E}, add one gore for each additional 18^{E} or fraction thereof.

Dimensions:

R-1.5A

Note:

1. McGill AirFlow UNI-SEAM (standing seam) construction will be used on the following available sizes: 9 through 12 in 1-inch increments, 14 through 24-inches in 2 -inch increments.
2. Nonstandard elbows with a different centerline radius and a different number of gores are available.

MITERED $90^{\text {E }}$ ELBOW WITH VANES

Designation:
SR0EMV-90
SR0EM-90 (without vanes)
Dimensions:

A (inches)	Number of vanes (\#)
$3-9$	2
$10-14$	3
$15-19$	4
$20-24$	5

MITERED $45^{\text {E }}$ ELBOW

Gasket

Gasket

HEEL-TAPPED 45^{E} ELBOW

Designation:
SR0ET3-45
Dimensions:

R-1.5A
$Z=0.348 \mathrm{~A}$
Maximum $\mathrm{C}=0.3 \mathrm{~A}$
STRAIGHT TEE
CONICAL TEE

LO-LOSS ${ }^{\text {TM }}$ TEE

Designation:

SROTL

Dimensions:

$\mathrm{V}=\mathrm{C}+\mathrm{H}+11 / 2$
$J=C+2($ for $C \# A-2)$
$J=C($ for $C>A-2)$
Maximum $\mathrm{C}=\mathrm{A}$

Available Tap (C) Sizes (inches)	\mathbf{H} (inches)
$3-8$	$41 / 2$
$9-14$	$71 / 2$
$16-24$	$101 / 2$

TANGENTIAL TEE

Designation:

SROTT
Dimensions:
$V=C+2$
Maximum $\mathrm{C}=\mathrm{A}$

Gasket

REDUCING STRAIGHT TEE

Designation:
SROTR
Dimensions:
$\mathrm{V}=\mathrm{C}+2$
Maximum $\mathrm{C}=\mathrm{A}$
A-B (1-inch minimum, 12-inch maximum)

REDUCING CONICAL TEE

Designation:

SROTCR
Dimensions:
$\mathrm{V}=\mathrm{C}+4$
Maximum $\mathrm{C}=\mathrm{A}-2$
A-B (1-inch minimum, 12-inch maximum)

REDUCING BULLHEAD TEE WITH VANES
$\mathrm{A}-\mathrm{C}-\mathrm{V} \quad-\mathrm{A}-\mathrm{D}$

Designation:

SROTBVR
Dimensions:
$V=A+2$
A-C or A-D
(1-inch minimum or 12-inch maximum)

A (inches)	Number of Vanes (\#)
$3-6$	1
$7-9$	3
$10-24$	5

STRAIGHT 905 ${ }^{\text {E }}$

CONICAL 90^{E} CROSS

Designation:
SROTXC
(-Ф if Φ...180E)
Dimensions:

$$
\begin{aligned}
& V=C+4 \\
& \text { Maximum } C \text { or } D=A-2
\end{aligned}
$$

LO-LOSS ${ }^{\text {TM }} 90^{E}$ CROSS

Designation:
SROTXL
(-Ф if Φ...180E)
Dimensions:
$\mathrm{V}=\mathrm{C}+\mathrm{H}_{\mathrm{C}}+2$
$\mathrm{J}_{\mathrm{C}}=\mathrm{C}+2$ (for C \# A - 2)
$J_{C}=C(f o r C>A-2)$
$J_{D}=D+2($ for D \# A - 2)
$J_{D}=D($ for $D>A-2)$
Maximum $\mathrm{C}=\mathrm{A}$

C or D Sizes (inches)	\mathbf{H}_{C} or H_{D} (inches)
$3-9$	$4 \frac{1}{2}$
$9-14$	$71 / 2$
$16-24$	$101 / 2$

REDUCING LO-LOSS ${ }^{\text {TM }} 90^{\text {E }}$ CROSS

Designation:

SROTXLR
(-Ф if Φ...180E)
Dimensions:
$\mathrm{V}=\mathrm{C}+\mathrm{H}_{\mathrm{C}}+2$
$\mathrm{J}_{\mathrm{C}}=\mathrm{C}+2$ (for C \#A - 2)
$J_{C}=C(f o r ~ C>A-2)$
$J_{D}=D+2$ (for D \#A - 2)
$J_{D}=D($ for $D>A-2)$
Maximum $\mathrm{C}=\mathrm{A}$
A - B (1-inch minimum, 12-inch maximum)

C or D Sizes (inches)	\mathbf{H}_{c} or H_{D} (inches)
$3-9$	$41 / 2$
$9-14$	$71 / 2$
$16-24$	$101 / 2$

REDUCING STRAIGHT CROSS

Designation:
SROTXR
(-Ф if Φ...180E)
Dimensions:
$V=C+2$
Maximum C or $\mathrm{D}=\mathrm{A}$
A-B (1-inch minimum, 12-inch maximum)

REDUCING CONICAL CROSS

LATERALS

STRAIGHT LATERAL

REDUCING LATERAL

Designation:

SROLR
(- θ if θ...45E)

Dimensions:

$\mathrm{V}=\frac{\mathrm{C}}{\sin \theta}+2$

1

Maximum C or $\mathrm{D}=\mathrm{A}$
$Q=\frac{A}{2 \tan \theta}+\frac{C}{2 \sin \theta}+1$
$H=\frac{A}{2 \sin \theta}+\frac{C}{2 \tan \theta}+2$

A - B (1-inch minimum 12-inch maximum)

CONTOURED FLANGED AND SADDLE STRAIGHT TEE TAP

CONTOURED FLANGED

Designation:

SROPT

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

Maximum $\mathrm{C}=\mathrm{A}$
Available Sizes:

CONTOURED FLANGED CONICAL TEE TAP

Designation:

SROPTC
Dimensions:
Specify diameter of duct, to which tap will be attached, as A

Maximum $C=A-2$

SADDLE CONICAL TEE TAP

Designation:

SROPTCS

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

Maximum $\mathrm{C}=\mathrm{A}-2$

CONTOUR FLANGED LO-LOSS ${ }^{\text {TM }}$ TEE TAP

Designation:
SROPTL
Dimensions:
$\mathrm{J}=\mathrm{C}+2($ for $\mathrm{C} \# \mathrm{~A}-2)$
$\mathrm{J}=\mathrm{C}($ for $\mathrm{C}>\mathrm{A}-2)$ Maximum $\mathrm{C}=\mathrm{A}$

Available Tap (C) Sizes (inches)	H (inches)
4,6 , and 8	$41 / 2$
10,12, and 14	$71 / 2$
$16,18,20,22$, and 24	$101 / 2$

SADDLE LO-LOSS ${ }^{\text {TM }}$ TEE TAP
 Designation:
 SROPTLS

Dimensions:

$$
\begin{aligned}
& J=C+2(\text { for } C \# A-2) \\
& J=C(f o r ~ C>A-2) \\
& \text { Maximum } C=A
\end{aligned}
$$

Available Tap (C) Sizes (inches)	H (inches)
4,6, and 8	$41 / 2$
10,12, and 14	$71 / 2$
$16,18,20,22$,and 24	$101 / 2$

CONTOURED FLANGED LATERAL TAPS

Designation:
 SROPL

($-\theta$ if $\theta \ldots .45^{\text {E }}$)

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

$$
H=(A / 2 \sin \theta)+(C / 2 \tan \theta)+2
$$

Maximum $\mathrm{C}=\mathrm{A}$

Designation:
SROPL
SROPLS
($-\theta$ if $\theta \ldots 45^{5}$)

Dimensions:

Specify diameter of duct, to which tap will be attached, as A
$H=(A / 2 \sin \theta)+(C / 2 \tan \theta)+2$
Maximum $\mathrm{C}=\mathrm{A}$

TAPS OFF FLAT SURFACE

STRAIGHT TAP OFF FLAT SURFACE

Gasket

Designation:
SROPT

CONICAL TAP AND BELLMOUTH OFF FLAT SURFACE

BELLMOUTH TAP

Designation: SROPTC

Dimensions:
Available Sizes:

C (inches)	Type	H (inches)
4	CONICAL	$41 / 2$
6	BELLMOUTH	$23 / 8$
8	BELLMOUTH	$23 / 8$
10	BELLMOUTH	$23 / 4$
12	BELLMOUTH	$23 / 4$
14	CONICAL	$41 / 2$
16	CONICAL	$41 / 2$
18	CONICAL	$41 / 2$
20	CONICAL	$41 / 2$
22	CONICAL	$41 / 2$
24	CONICAL	$41 / 2$

OFFSET and SQUARE-TO-ROUND

SQUARE-TO-ROUND

Designation:

SR0QR
Dimensions:
$V=12,24,36$, or 48
A = Major axis of rectangular side
$\mathrm{a}=$ Minor axis of rectangular side

B

1

Gasket

McGill AinfFlow ณนc

An enterprise of United McGill Corporation Founded in 1951

Corporate Headquarters

One Mission Park
Groveport, Ohio 43125-1149
614/836-9981, Fax: 614/836-9843
E-mail: marketing @ mcgillairflow.com
Web site: mcgillairflow.com

[^0]: 1 SMACNA is the Sheet Metal and Air Conditioning Contractors National Association.
 ${ }^{2}$ McGill AirFlow single-wall, round duct and ungasketed fittings are available in diameters of 3 through 90 inches in many gauges of various materials. See the Single-Wall and Single-Wall Lined, Round Duct and Fittings Dimensions booklet for the full range of available sizes.
 ${ }^{3}$ Standard lengths of round UNI-SEAL and UNI-RIB duct are 10, 12, and 20 feet; longer lengths are available on special order.
 ${ }^{4}$ The rating of +10 in . wg for Spiral Lockseam with Standing Rib Duct is based on McGill AirFlow laboratory testing.
 ${ }^{5}$ Available in galvanized, paintable galvanized, and SilverGuard ${ }^{\top \mathrm{M}}$ precoated ductwork with antimicrobial.

