

An enterprise of United McGill Corporation -Founded in 1951

One Mission Park Groveport, Ohio 43125-1149 614/836-9981, Fax: 614/836-9843 E-mail: marketing@mcgillairflow.com Web site: http://www.mcgillairflow.com

Single-Wall Round UNI-GASKET™ Fitting and Related Product Dimensions

McGill AirFlow Corporation offers UNI-GASKET fittings featuring an EPDM rubber gasket that provides a reliable, airtight seal. Testing has shown that UNI-GASKET fittings meet or exceed SMACNA¹ Class 3 for leakage at - 20 in. wg to + 20 in. wg. The galvanized steel construction⁵ meets SMACNA's 10 in. wg positive pressure standards². UNI-GASKET fittings are compatible and available with all of McGill AirFlow's round, single-wall duct types in 1-inch increments for 3- through 12-inch diameters and in 2-inch increments in 14- through 24-inch diameters.

 Table 1 - Positive Pressure, Single-wall, Round Duct and Fitting, Galvanized Steel Gauges

Diameters (inches)	UNI-SEAL™ Spiral Lockseam Duct³	UNI-RIB [®] Spiral Lockseam with Standing Rib Duct ^{3,4}	UNI-GASKET™ Fittings
3	28	NA	26
4	28	NA	26
5	28	NA	26
6	28	NA	26
7	28	NA	26
8	28	NA	26
9	28	28	26
10	28	28	26
11	26	28	24
12	26	28	24
14	26	28	24
16	24	28	22
18	24	28	22
20	24	28	22
22	24	28	22
24	24	28	22

¹ SMACNA is the Sheet Metal and Air Conditioning Contractors National Association.

² McGill AirFlow single-wall, round duct and ungasketed fittings are available in diameters of 3 through 90 inches in many gauges of various materials. See the Single-Wall and Single-Wall Lined, Round Duct and Fittings Dimensions booklet for the full range of available sizes.

³ Standard lengths of round UNI-SEAL and UNI-RIB duct are 10, 12, and 20 feet; longer lengths are available on special order.

⁴ The rating of +10 in. wg for Spiral Lockseam with Standing Rib Duct is based on McGill AirFlow laboratory testing.

⁵ Available in galvanized, paintable galvanized, and SilverGuard[™] precoated ductwork with antimicrobial.

Duct Construction

Fitting Construction

Dimensioning:

All alphanumeric dimensions are in inches; all angles are in degrees.

Α	-	Main barrel inlet diameter
В	-	Main barrel outlet diameter
C or D	-	Branch tap diameter (Note: On tee and lateral fittings with two taps, C is the branch closest to the inlet of the fitting. On cross fittings, C is the larger of the two taps.)
R	-	Centerline radius
S	-	Slip-fit dimension of a fitting
F, H, J, L, Q,	-	Miscellaneous dimensions (refer to specific drawings)
V, Ζ, m, α		
θorΦ	-	Angular measurements (refer to specific drawings)
#	-	Number of elbow gores

Designations:

McGill AirFlow uses a designation system that simplifies product nomenclature. Gasketed fitting products can be accurately identified using a concise alphanumeric designator. Each character in the designation defines a characteristic of the product.

Example: SR0PT refers to a single-wall (S), round (R), 10 in. wg positive pressure class (0), straight tee tap (PT).

1st Character: Wall Configuration - SR0PT

S = Single-wall

2nd Character: Shape - SR0PT

R = Round

3rd Character: Pressure Class - SR0PT

0 = +4 to +10 in. wg **S** = standard gauge of product type

 4^{th} and Subsequent Characters: Product Type - SR0PT

PT = Straight Tee Tap (90^{E} branch tap)

General Notes:

• Dimensions other than diameters are held within a \pm 1/4-inch tolerance.

- Galvanized steel meets ASTM Numbers A653 and A924
- Unless ordered otherwise, the branch taps of laterals, crosses, lateral crosses and Y-branches are installed at standard angles to the fittings' bodies and to each other, as shown in the following drawings:

For all:

Laterals - θ standard = 45^{E} Straight Crosses - θ standard = 90^{E} , Φ standard = 180^{E} Lateral Crosses - θ standard = 45^{E} , Φ standard = 180^{E} Y - Branch - θ standard = 90^{E}

Note: Φ is the included angle between taps as viewed in cross section (standard is 180^E). When ordering fittings of nonstandard Φ , please include an end view sketch.

Installation:

- Make sure the end of the duct or gasketed fitting is not damaged.
- Insert the gasketed fitting into the spiral duct up to the fitting bead. Turning the fitting slightly as it is inserted may make installation easier.
- Secure the fitting to the duct with self-tapping screws uniformly located around the circumference according to SMACNA recommendations. Use at least one screw for every 15 inches of circumference with a minimum of three screws for 14-inch or smaller diameters.
- The following chart illustrates some typical gasketed assemblies:

• The following figure illustrates gasketed fittings assembled to ductwork with a manifolded tap:

DUCT

UNI-SEAL DUCT (Spiral lockseam)

Designation: SR0SD

Diameters:

3-inch minimum 84-inch maximum

UNI-RIB DUCT

(Spiral lockseam with a standing rib between the seams)

Designation: SRSRD

Diameters:

9-inch minimum 60-inch maximum

ELBOWS

ELBOWS

McGill Air Flow Corporation

GORED ELBOW

Designation: SR0E#-0

Where: Number of gores θ (#) 0-35^E 2 36-71^E 3 72-90^E 5

For elbows where θ exceeds 90^{E} , add one gore for each additional 18^E or fraction thereof.

Dimensions:

R – 1.5A

Note:

1. McGill AirFlow UNI-SEAM (standing seam) construction will be used on the following available sizes: 9 through 12 in 1-inch increments, 14 through 24-inches in 2-inch increments.

Gasket

2. Nonstandard elbows with a different centerline radius and a different number of gores are available.

Designation:

MITERED 90^E ELBOW WITH VANES

ELBOWS

McGill AirFlow Corporation

z

Α

Gasket

R – 1.5A Z = 0.348A Maximum C = 0.3A

R

TEES

CONICAL TEE

Designation: SR0TC

Dimensions:

V = C + 4Maximum C = A - 2

LO-LOSS™ TEE

Designation: SR0TL

Dimensions:

 $V = C + H + 1\frac{1}{2}$ J = C + 2 (for C # A - 2) J = C (for C > A - 2) Maximum C = A

Available Tap (C) Sizes (inches)	H (inches)
3-8	41⁄2
9-14	71⁄2
16- 24	10½

TEES

McGill Air Flow Corporation

Designation: SR0TR

Dimensions:

V = C + 2Maximum C = AA - B (1-inch minimum, 12-inch maximum)

Designation: SR0TCR

Dimensions:

V = C + 4Maximum C = A - 2 A - B (1-inch minimum, 12-inch maximum)

REDUCING CONICAL TEE

TEES

Gasket

Designation: SR0TLR

Dimensions:

$V = C + H + 1\frac{1}{2}$ J = C + 2 (for C # A - 2) J = C (for C > A - 2) Maximum C = A A - B (1-inch minimum 12-inch maximum)

Available Tap (C) Sizes	H
(inches)	(inches)
3-9	4½
9-14	1 ½
16- 24	10½

Designation: SR0TBR

Dimensions:

V = A + 2

A - C or A - D (1-inch minimum or 12-inch maximum)

- А-В

REDUCING LO-LOSS™ TEE

v —

REDUCING BULLHEAD TEE WITH VANES

Designation: SR0TBVR

Dimensions:

V = A + 2

A - C or A - D (1-inch minimum or 12-inch maximum)

A (inches)	Number of Vanes (#)
3-6	1
7-9	3
10-24	5

Y-BRANCHES MCGIII AIFFIOW Corporation

Y-BRANCHES MCGIII AIFFIOW Corporation

LO-LOSS[™] 90^E CROSS

Designation: SR0TXL $(-\Phi \text{ if } \Phi \dots 180E)$

Dimensions:

 $V = C + H_{c} + 2$ $J_{c} = C + 2 \text{ (for } C \# A - 2)$ $J_{c} = C \text{ (for } C > A - 2)$ $J_{D} = D + 2 \text{ (for } D \# A - 2)$ $J_{D} = D \text{ (for } D > A - 2)$

Maximum C = A

C or D Sizes	H _c or H _⊳
(inches)	(inches)
3-9	4½
9-14	7½
16- 24	10½

REDUCING LO-LOSS™ 90^E CROSS

Designation: SR0TXLR $(-\Phi \text{ if } \Phi \dots 180E)$

Dimensions:

 $V = C + H_{c} + 2 \\ J_{c} = C + 2 (for C \# A - 2) \\ J_{c} = C (for C > A - 2) \\ J_{D} = D + 2 (for D \# A - 2) \\ J_{D} = D (for D > A - 2)$

Maximum C = A

A - B (1-inch minimum, 12-inch maximum)

C or D Sizes	Η _c or Η _D
(inches)	(inches)
3-9	4½
9-14	7½
16- 24	10½

McGill Air Flow Corporation

REDUCING STRAIGHT CROSS

Designation: SR0TXR (-Φ if Φ ...180E)

Dimensions:

V = C + 2Maximum C or D = A A - B (1-inch minimum, 12-inch maximum)

REDUCING CONICAL CROSS

Designation: SR0TXCR (-Φ if Φ ...180E)

Dimensions:

V = C + 4Maximum C = A - 2A - B (1-inch minimum, 12-inch maximum)

REDUCERS MCGIII AIFFlow Corporation

ECCENTRIC REDUCER

Designation: SR0RE

Dimensions:

A - B (4-inch minimum 12-inch maximum)

CONCENTRIC REDUCER

Designation: SR0R

Dimensions:

A - B (1-inch minimum 12-inch maximum)

LATERALS

STRAIGHT LATERAL

REDUCING LATERAL

Designation: SR0LR (-θ if θ ...45E)

Dimensions:

$$V = \frac{C}{\sin \theta} + 2$$

$$Q = \frac{A}{2\tan\theta} + \frac{C}{2\sin\theta} + 1$$

McGill Air Flow Corporation

$$H = \frac{A}{2\sin\theta} + \frac{C}{2\tan\theta} + 2$$

Maximum C or D = A

A - B (1-inch minimum 12-inch maximum)

LATERALS

REDUCING LATERAL CROSS

Designation:

SR0LX

(- θ if θ ...45E,- Φ if Φ ...180E)

Dimensions:

$$V = \frac{C}{\sin \theta} + 2$$

$$Q = \frac{A}{2\tan\theta} + \frac{C}{2\sin\theta} + 1$$

$$H_{C} = \frac{A}{2\sin\theta} + \frac{C}{2\tan\theta} + 2$$

$$H_{D} = \frac{A}{2\sin\theta} + \frac{D}{2\tan\theta} + 2$$

Maximum C or D = A

Designation: SR0LXR (-θ if θ ...45E,-Φ if Φ ...180E)

Dimensions:

$$V = \frac{C}{\sin \theta} + 2$$

$$Q = \frac{A}{2\tan\theta} + \frac{C}{2\sin\theta} + 1$$

$$H_{C} = \frac{A}{2\sin\theta} + \frac{C}{2\tan\theta} + 2$$

$$H_{D} = \frac{A}{2\sin\theta} + \frac{D}{2\tan\theta} + 2$$

Maximum C or D = A

A - B (1-inch minimum 12-inch maximum)

TAPS

McGill Air Flow

CONTOURED FLANGED AND SADDLE STRAIGHT TEE TAP

CONTOURED FLANGED

1/2"

1"

Gasket

CONTOURED FLANGED CONICAL TEE TAP

Designation: SR0PT

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

Maximum C = A

Available Sizes:

C (inches)	A (inches)	Туре	Turnout (inches)	H (inches)
4	4,6,8,10, 12	Cont	1/2	1
6	6	Cont	1/2	1
6	8,10,12	Saddle	1	1 ½
8	8	Cont	1/2	1
8	10,12,14,16	Saddle	1	1 1⁄2
10	10	Cont	1/2	1
10	12,14,16	Saddle	2	1 3/8
12	12	Cont	1/2	1
12	14,16,18	Saddle	2	1 3/8
14	14,16,18,20	Cont	1/2	1
16	16,20,22,24	Cont	1/2	1

Designation: SR0PTC

Dimensions:

1/2"

Specify diameter of duct, to which tap will be attached, as A

Maximum C = A - 2

SADDLE CONICAL TEE TAP

С

Designation: SR0PTCS

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

Maximum C = A - 2

SADDLE

1/2

4 ½"

CONTOUR FLANGED LO-LOSS™ TEE TAP

SADDLE LO-LOSS™ TEE TAP

Designation: SR0PTL

Dimensions:

1⁄2"

J = C + 2 (for C # A - 2)J = C (for C > A - 2)Maximum C = A

Available Tap (C) Sizes (inches)	H (inches)
4, 6, and 8	4½
10, 12, and 14	7½
16, 18, 20, 22,and 24	10½

Designation: SR0PTLS

Dimensions:

J = C + 2 (for C # A - 2)J = C (for C > A - 2)Maximum C = A

Available Tap (C) Sizes (inches)	H (inches)
4, 6, and 8	4½
10, 12, and 14	7½
16, 18, 20, 22,and 24	10½

McGill Air Flow Corporation

CONTOURED FLANGED LATERAL TAPS

Designation: SR0PL

(- θ if θ ...45^E)

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

 $H = (A / 2 \sin \theta) + (C / 2 \tan \theta) + 2$

Maximum C = A

Designation: SR0PL SR0PLS (-θ if θ ...45^ε)

Dimensions:

Specify diameter of duct, to which tap will be attached, as A

 $H = (A / 2 \sin \theta) + (C / 2 \tan \theta) + 2$

Maximum C = A

TAPS OFF FLAT SURFACE

STRAIGHT TAP OFF FLAT SURFACE

CONICAL TAP AND BELLMOUTH OFF FLAT SURFACE

BELLMOUTH TAP

Designation: SR0PTC

Designation: SR0PT

Dimensions:

Available Sizes:

C (inches)	Туре	H (inches)
4	CONICAL	4 1⁄2
6	BELLMOUTH	2 3⁄8
8	BELLMOUTH	2 3⁄8
10	BELLMOUTH	2 ¾
12	BELLMOUTH	2 ¾
14	CONICAL	4 1⁄2
16	CONICAL	4 1⁄2
18	CONICAL	4 1⁄2
20	CONICAL	4 1⁄2
22	CONICAL	4 1/2
24	CONICAL	4 1/2

OFFSET and SQUARE-TO-ROUND MCGIII Air Flow

Designation: SR0Z

Dimensions:

V = 2A

Z = Must be specified

Note: Z should not exceed 0.75 A or angle be larger than 60E. If larger use fabricated elbows and a straight length of duct.

OFFSET

Designation: SR0QR

Dimensions:

V = 12, 24, 36, or 48

A = Major axis of rectangular side a = Minor axis of rectangular side

COUPLING and END PLUG

Designation: SR0C

END PLUG

Designation: SR0ENPL

McGill AirFlow LLC

An enterprise of United McGill Corporation — Founded in 1951

Corporate Headquarters

One Mission Park Groveport, Ohio 43125-1149 614/836-9981, Fax: 614/836-9843 E-mail: marketing@mcgillairflow.com Web site: mcgillairflow.com