An enterprise of United McGill Corporation -
Founded in 1951
One Mission Park
Groveport, Ohio 43125-1149
614/836-9981, Fax: 614/836-9843
E-mail: mcgillairflow@compuserve.com
Web site: http://www.mcgillairflow.com

Single-Wall and Single-Wall Lined, Round Duct and Fittings Dimensions

McGill AirFlow Corporation has a complete line of single-wall and single-wall lined, round duct and fittings. The internallylined product incorporates a rigid or semi-rigid fiberglass insulation with an EPA-registered antimicrobial, erosion-resistant coating on the air-side surface. The insulation is available in 1 - and $11 / 2$-inch thicknesses and has thermal and acoustical properties comparable to the double-wall duct construction.

Table 1 - Single-wall, Round Duct- Available Sizes, Materials, and Thicknesses ${ }^{1}$

Construction	Diameters	Lengths ${ }^{2}$	Materials ${ }^{\text {3,4 }}$	Thicknesses ${ }^{8}$
UNI-SEAL ${ }^{\text {™ }}$ Duct (spiral lockseam)	3-84 inches	1-20 feet	Galvanized Steel	28-14 gauge
			Stainless Steel	26-20 gauge
	$3-60$ inches 5		Aluminum	0.025-0.063 inch ${ }^{5}$
UNI-RIB ${ }^{\circledR}$ Duct (spiral lockseam with standing rib)	9-60 inches	1-20 feet	Galvanized Steel	28-22 gauge
			Aluminum	0.025-0.050 inch
Longitudinal Seam Duct ${ }^{6}$ (solid welded)	8-90 inches	1-6 feet	Galvanized Steel	20-10 gauge
			Stainless Steel	22-10 gauge
	8-84 inches ${ }^{5}$		Aluminum	0.040-0.090 inch^{5}

Table 2 - Single-wall, Round Fittings- Available Sizes, Materials, and Thicknesses ${ }^{1}$

Construction	Diameters	Materials ${ }^{3,4}$	Thicknesses
UNI-SEAL Fittings (spot welded and bonded, or standing seam)	$3-90$ inches	Galvanized Steel	$26-10$ gauge
	$3-84$ inches 5	Stainless Steel	$26-10$ gauge
	Aluminum	$0.032-0.090$ inch 5	

[^0]
Longitudinal Seam

RL-2 Seam Type

Spiral Lockseam with Standing Rib

Spot weld 1 inch or lap, rivet, and tack weld 3 inches
Spot weld 2 inches or lap, rivet, and tack weld 6 inches

Table 3-Available Range of Spiral Duct Diameters by Thickness ${ }^{1}$

Gauge	Galvanized Steel, Aluminized Steel and Nongalvanized Carbon Steel		Stainless Steel (304, 304L, 316 and 316L)	Polyvinyl-chloride-coated galvanized steel	Aluminum ${ }^{2}$		
	Spiral Lockseam Diameter (inches)	Spiral Lockseam with Standing Rib Diameter (inches)	Spiral Lockseam Diameter (inches)	Spiral Lockseam Diameter (inches)	Thickness (inches)	Spiral Lockseam Diameter (inches)	Spiral Lockseam with Standing Rib Diameter (inches)
28	3-14 1/2	9-42	N/A	N/A	0.025	3-26	9-42
26	3-26	9-60	3-36	4-26	0.032	3-50	9-60
24	3-36	9-60	3-50	4-34	0.040	3-60	N/A
22	3-50	9-60	3-60	4-50	0.050	3-60	N/A
20	3-60	N/A	3-84	15-60	0.063	3-60	N/A
18	3-84	N/A	N/A	15-84			
16	6-84	N/A	N/A	N/A			
14	24-84	N/A	N/A	N/A			

[^1]
Fitting Construction

Dimensioning

(All alphanumeric dimensions are in inches, all angles are in degrees)

A	-	Main barrel inlet diameter
\mathbf{B}	-	Main barrel outlet diameter
\mathbf{C} or \mathbf{D}	-	Branch tap diameter (Note: On tee and lateral fittings with two taps, \mathbf{C} is the branch closest to the
		inlet of the fitting. On cross fittings, \mathbf{C} is the larger of the two taps.)
\mathbf{t}	-	Insulation/liner thickness
\mathbf{R}	-	Centerline radius
\mathbf{S}	-	Slip-fit dimension of a fitting
$\mathbf{F}, \mathbf{H}, \mathbf{J}, \mathbf{L}, \mathbf{Q}$,	-	Miscellaneous dimensions (refer to specific drawings)
$\mathbf{V}, \mathbf{Z}, \mathbf{m}, \mathbf{a}$		
$\boldsymbol{\theta}$ or $\boldsymbol{\varphi}$	-	Angular measurements (refer to specific drawings)
\#	-	

General Notes:

- Dimensions other than diameters are held within a $1 / 4$-inch tolerance.
- Single-wall lined, round duct dimensions are for the metal shell.
- Unless ordered otherwise, a given diameter of single-wall, round fittings is sized to slip fit into the same diameter of single-wall, round duct.
- Single-wall lined and unlined, round fittings ordered for a 2-inch slip-fit assembly have a slip-fit section as shown in the following drawings:

Where: $\quad \mathrm{S}=\mathbf{2}$ inches

- Single-wall duct and fittings can be ordered with Van Stone or applied connectors. These change the makeup dimensions of standard slip-fit dimension ends. Refer to the details on page 35 for further information.
- Unless ordered otherwise, the branch taps of laterals, crosses, lateral crosses, and Y-fittings are installed at standard angles to the fittings' bodies and to each other, as shown in the following drawings:

For all:

Laterals, θ standard $=45^{\circ}$
Crosses, θ standard $=90^{\circ}, \varphi$ standard $=180^{\circ}$
Lateral Crosses, θ standard $=45^{\circ}, \varphi$ standard $=180^{\circ}$
Y-Fittings, θ standard $=90^{\circ}$
Note: φ is the included angle between taps as viewed in cross section (standard is 180°). When ordering fittings of nonstandard φ, please include an end view.

General Notes:

- For installation information, refer to McGill AirFlow's brochure Installation of Single-wall Duct and Fittings.
- Flat oval and rectangular taps are available in lieu of round. Specify dimensions.
- The Q dimension of laterals and lateral crosses may be less than, equal to, or greater than the V dimension of these fittings.

Designations:

McGill AirFlow uses a designation system that simplifies product nomenclature. Most of our products can be accurately identified using a concise alphanumeric designator. Each character in the designation defines a characteristic of the product.

Example: SR4T refers to a single-wall (S), round (R), 4 in wg pressure class (4), straight tee (T).
$1^{\text {st }}$ Character: Wall Configuration - SR4T
$\mathbf{S}=$ Single-wall
I = Single-wall, lined (1 and 1122 inches only)
K = k27 Double-wall
$2^{\text {nd }}$ Character: Shape - SR4T
$\mathbf{R}=$ Round
$0=$ Oval
$3{ }^{\text {rd }}$ Character: Pressure Class - SR4T
$2=0$ to +2 in wg
$4=\quad+2$ to +4 in wg
$0=+4$ to +10 in wg
$\mathbf{X}=0$ to -2 in wg
$\mathbf{Y}=-2$ to -4 in wg
$\mathbf{Z}=-4$ to -10 in wg
$\mathbf{N}=$ nonstandard gauge (user specified)
$\mathbf{S}=$ standard gauge of product type
Notes: 1. When ordering duct or fittings, specify $2,4,0, X, Y, Z, S$, or N in the * position of the designation.
2. Pressure ranges listed for $2,4,0, X, Y$, and Z are based on 1995 SMACNA Duct Construction Standards (galvanized only).
3. SMACNA is the Sheet Metal and Air Conditioning Contractors National Association.
$4^{\text {th }}$ and Subsequent Characters: Product Type - SR4T
$\mathbf{T}=$ Straight Tee $\left(90^{\circ}\right.$ branch fitting)

Table 4 - Thickness/Weight Relationships of Standard Materials

Gauge	Galvanized and Paintable Galvanized Steel			Nongalvanized Carbon Steel			Stainless Steel (304 or 316)		

Aluminum 3003-H14		
Minimum Thickness (inches)	Nominal Thickness (inches)	Nominal Weight (lb/sq ft)
0.0230	0.025	0.356
0.0295	0.032	0.456
0.0365	0.040	0.570
0.0465	0.050	0.713
0.0595	0.063	0.898
0.0755	0.080	1.140
0.0855	0.090	1.283
0.0945	0.100	1.426
0.1195	0.125	1.782

Table 5 - Material Specifications

Standard Material	Type	ASTM Number
Galvanized Steel	--	A653, A924
Stainless Steel	$304,304 \mathrm{~L}, 316,316 \mathrm{~L}$	A167, A480
Nongalvanized Carbon Steel	$18-28$ gauge	A366, A568, A569
Aluminum	$3003-\mathrm{H} 14$	B209
Aluminized	Type 1	A463

Other types of material are available on special order.
Table 6 - McGill AirFlow Standard Construction Methods

Product	Construction
UNI-SEAL Duct	Spiral lockseam
UNI-RIB Duct	Spiral lockseam with standing rib
Longitudinal Seam Duct	Rolled and butt welded
UNI-SEAL Fittings 1	Standard: Spot/tack welded, or standing seam and sealed. Available fully welded.

${ }^{1}$ UNI-COAT (PVC coated) fittings are button punched, riveted, or screwed and sealed.

Table 7 - Unreinforced, Positive Pressure, Single-wall, Round Duct Gauges for Galvanized, Polyvinyl-Chloride (PVC)-Coated Steel, Nongalvanized Carbon Steel, or Stainless Steel

Maximum Diameter (inches)	$+\mathbf{+ 2}$ in wg		$+\mathbf{4}$ in wg		$+\mathbf{1 0}$ in wg		
	Spiral Lockseam Duct	Longitudinal Seam Duct or Fittings	Spiral Lockseam Duct	Longtiudinal Seam Duct or Fittings	Spiral Lockseam Duct	Longitudinal Seam Duct or Fittings	Spiral Lockseam with Standing Rib Duct
6	28	26	28	26	28	26	NA
8	28	26	28	26	28	26	NA
10	28	26	28	26	28	26	28
12	28	26	28	26	26	24	28
14	28	26	26	24	26	24	28
16	26	24	26	24	24	22	28
18	26	24	24	24	24	22	28
$19-26$	26	24	24	22	24	22	28
$27-36$	24	22	22	20	22	20	28
$37-50$	22	20	20	20	20	20	26
$51-60$	20	18	18	18	18	18	26
$61-84$	18	16	18	16	18	16	NA

Table 8 - Unreinforced, Positive Pressure, Single-wall, Round Duct Thicknesses (inches) for Aluminum

Maximum Diameter (inches)	Maximum $\mathbf{+ 2}$ in wg		Maximum $\mathbf{+ 4}$ in wg		Maximum $+\mathbf{1 0}$ in wg	
	Spiral Lockseam Duct	Longitudinal Seam Duct or Fittings	Spiral Lockseam Duct	Longitudinal Seam Duct or Fittings	Spiral Lockseam Duct	Longitudinal Seam Duct or Fittings
6	0.025	0.032	0.025	0.032	0.025	0.032
8	0.025	0.032	0.025	0.032	0.025	0.032
10	0.025	0.032	0.025	0.032	0.025	0.032
12	0.025	0.032	0.025	0.032	0.032	0.040
14	0.025	0.032	0.032	0.040	0.032	0.040
16	0.032	0.040	0.032	0.040	0.040	0.050
18	0.032	0.040	0.040	0.040	0.040	0.050
$19-26$	0.032	0.040	0.040	0.050	0.040	0.050
$27-36$	0.040	0.050	0.050	0.063	0.050	0.063
$37-50$	0.050	0.063	0.063	0.063	0.063	0.063
$51-60$	0.063	0.080	NA	NA	NA	NA
$61-84$	NA	0.090	NA	NA	NA	NA

Notes for Tables 7 and 8:

1. Longitudinal seam duct is made up of the same gauge as fittings except as noted in Table 1.
2. Stainless steel has 26 gauge minimum for spiral lockseam duct and 22 gauge minimum for longitudinal seam duct and fittings.
3. Polyvinyl-chloride -coated galvanized steel has 26 gauge minimum and 18 gauge maximum for duct and fittings.
4. Construction of aluminum duct and fittings shall otherwise correspond in the same relationship as for steel duct (see Table 4) for thickness required for equal strength or stiffness. SMACNA does not have aluminum standards for pressures greater in magnitude than 2 in wg.
5. The rating of +10 in $w g$ for ribbed duct is based on McGill AirFlow laboratory testing.

Table 9-Negative Pressure, Single-wall, Round Duct Gauges for Galvanized, Polyvinyl-Chloride (PVC)-Coated Steel, Nongalvanized Carbon Steel, or Stainless Steel

Maximum Diameter (inches)	$\mathbf{- 2}$ in wg		$\mathbf{- 4}$ in wg		-10 in wg	
	Spiral Lockseam Duct	Longitudinal Seam Duct or Fittings	Spiral Lockseam Duct	Longitudial Seam Duct or Fittings	Spiral Lockseam Duct	Longitudinal Seam Duct or Fittings
6	28	26	28	26	26	26
7	28	26	28	26	26	26
8	28	26	28	26	26	26
9	28	26	28	26	26	24
10	28	26	26	26	26	22
11	28	26	26	24	26	22
12	28	26	26	24	24	22
13	28	26	26	24	24	20
14	28	24	24	22	24	20
15	28	24	24	22	22	20
16	26	24	24	22	22	18
17	26	24	24	20	22	18
18	24	22	24	20	22	18
19	24	22	24	20	22	18
20	24	22	22	20	22	18
21	24	20	22	18	22	18
22	24	20	22	18	22	16
23	24	20	22	18	20	16
24	22	20	22	18	20	16
$25-26$	22	20	20	18	20	18 A4
$27-29$	22	18	20	16	18	16 A4
30	22	18	20	16	18	16 B4
$31-33$	20	18	20	16	18	16 B4
34	20	18	20	20 A6	18	16 B4
$35-36$	20	16	20	20 A6	18	16 B4
$37-42$	20	16	18	18 B6	18 F12	
$43-48$	20	18 A6	18	18 B6	18 F6	
$49-60$	18	18	18	F6	16 B4	18 F6
$61-72$	16		18 F6		16 F4	

Notes for Table 9:

1. Longitudinal seam duct is made of the same gauge as fittings except as noted in Table 1.
2. Stainless steel has 26 gauge minimum for spiral lockseam duct and 22 gauge minimum for longitudinal seam duct and fittings.
3. Polyvinyl-chloride -coated galvanized steel has 26 gauge minimum and 18 gauge maximum for duct and fittings.
4. The letter in the table means that the reinforcement angles or their equivalent must be used at the foot interval following the letter. The angle sizes are:
A = 1"x1"x1/8"; B = 1-1/4"x1-1/4"x3/16"; C = 1-1/2"x1-1/2"x3/16"; D = 1-1/2"x1-1/2"x1/4"; E = 2"x2"x3/16"; F = 2"x2"x1/4".
5. If companion flange joints are used as reinforcements, those for 25 " to 36 " diameters shall be $1-1 / 2 " x 1-1 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}$ "; for 37 " to 48 " diameters 2 "x2"x3/16"; for 50 " to 60 " diameters $2-1 / 2 " x 2-1 / 2 " x 3 / 16 " ;$ for 61 " to 72 " diameters $3 " x 3 " x 1 / 4$ ".

Table 10-Reinforced and Unreinforced, Negative Pressure, Single-wall, Round Duct Thicknesses (inches) for Aluminum

Maximum Diameter (inches)	Maximum -2 in wg		Maximum -4 in wg		Maximum -10 in wg	
	Spiral Lockseam Duct	Longitudinal Seam Duct or Fittings	Spiral Lockseam Duct	Longitudinal Seam Duct or Fittings	Spiral Lockseam Duct	Longitudinal Seam Duct or Fittings
$3-8$	0.025	0.040	0.025	0.040	0.032	0.040
9	0.032	0.040	0.025	0.040	0.032	0.040
$10-11$	0.032	0.040	0.032	0.040	0.032	0.050
12	0.032	0.040	0.032	0.040	0.040	0.050
13	0.032	0.040	0.032	0.040	0.040	0.063
14	0.032	0.040	0.040	0.050	0.040	0.063
15	0.040	0.050	0.040	0.050	0.050	0.063
16	0.040	0.050	0.040	0.050	0.050	0.080
$17-18$	0.040	0.050	0.040	0.063	0.050	0.080
19	0.040	0.050	0.040	0.063	0.050	0.080
20	0.040	0.050	0.050	0.063	0.050	0.080
21	0.040	0.050	0.050	0.080	0.050	0.080
22	0.040	0.050	0.050	0.080	0.050	0.090
23	0.040	0.050	0.050	0.080	0.063	0.090
24	0.040	0.050	0.050	0.080	NA	0.090
$25-26$	0.040	0.050	0.063	0.080	NA	0.080 A4
$27-29$	0.050	0.063	0.063	0.090	NA	$0.090 \mathrm{A4}$
$30-33$	0.050	0.063	0.063	0.090	NA	0.090 B4
$34-36$	0.050	0.063	0.063	0.063 A6	NA	0.090 B4
$37-48$	0.063	0.080	0.080	0.080 B6	NA	NA
$49-50$	0.063	0.080	NA	0.090 B 4	NA	NA
$51-60$	NA	0.090	NA	0.090 B4	NA	NA

Notes for Table 10:

1. Longitudinal seam duct is made of the same gauge as fittings except as noted in Table 1
2. Construction of aluminum duct and fittings shall otherwise correspond in the same relationship as for steel duct (see Table 4) for thickness required for equal strength or stiffness. SMACNA does not have aluminum standards for pressures greater in magnitude than 2 in wg.
3. The letter in the table means that the reinforcement iron angles or their equivalent must be used at the foot interval following the letter. The angle sizes are:
A = 1 " $x 1$ " $x 1 / 8 " ; B=1-1 / 4 " x 1-1 / 4 " x 1 / 8 "$
Table 11 - Positive Pressure, Single-wall, Round Duct Gauges for Polyvinyl-Chloride (PVC)-Coated Steel for Underground Duct Systems

Diameter (inches)	Spiral Duct Gauge Maximum +10 in wg	Fitting Gauge Maximum +10 in wg
$4-8$	26	24
$81 / 2-16$	24	22
$18-24$	22	22
$26-32$	20	20
$34-60$	18	18

UNI-SEAL DUCT
(Spiral lockseam)
DESIGNATION:
SR(*)SD

DIMENSIONS:

3-inch minimum
84-inch maximum

UNI-RIB DUCT

(Spiral lockseam with rib)
DESIGNATION:
SR(S or N)RD

DIMENSIONS:

9-inch minimum
60-inch maximum

LONGITUDINAL SEAM DUCT¹

(Solid welded longitudinal seam)
DESIGNATION:
SR(*)LD

DIMENSIONS:

8-inch minimum
90 -inch maximum
${ }^{1}$ smaller or larger diameters available on special orđer.

DIE-STAMPED or PRESSED ELBOW

DESIGNATION:

SRSE-90 or
SRSE-45
DIMENSIONS:
$R=1.5 \mathrm{~A}$
Note: Available in galvanized steel, paintable galvanized steel, type 304 and 316 stainless steel, and aluminum.

Available sizes

θ	Diameters
45°	$3,4,5,6,7,8,9,10,11,12$, and 14 inches
90°	$3,4,5,6,7,8,9,10,11$, and 12 inches

PLEATED ELBOW

DESIGNATION:

SRSEP-90 or
SRSEP-45
DIMENSIONS:
$R=1.5 \mathrm{~A}$
Note: Available only in galvanized or paintable galvanized steel.

Available sizes

θ	Diameters
45°	$3,4,5,6,7,8,10,11,12,14$, and 16 inches
90°	$4,5,6,7,8,10,11,12$, and 14 inches

GORED ELBOW

Diameter ≤ 22 inches

Diameter > 22 inches

GORED ELBOW

(With Van Stone connector ends)

Diameter > 22 inches

Designation:

SR(*)E\#- $\boldsymbol{\theta}$
Where:

$\boldsymbol{\theta}$	Number of gores
$0-35^{\circ}$	2
$36-71^{\circ}$	3
$72-90^{\circ}$	5

For elbows where θ exceeds 90°, add one gore for each additional 18° or fraction thereof.

DIMENSIONS:

$\mathrm{R}=1.5 \mathrm{~A}$

Notes:

1. Nonstandard elbows with a different centerline radius and a different number of gores are available. Customer to specify face-to-face dimension when using applied connectors (see page 35).
2. Where possible, McGill AirFlow UNISEAM ${ }^{\text {™ }}$ (standing seam) construction will be used on gored elbows (9-30 inches in diameter).
3. End gores are turned up $1 / 2$ inch to create the flange on gored elbows with Van Stone connector ends when the diameter is greater than 22 inches. See the applied connector/Van Stone connector detail on page 35 for diameters less than or equal to 22 inches.

MITERED 90° ELBOW

DESIGNATION:

SR(*)EMV-90
with turning vanes
(shown)
SR(*)EM-90
without turning vanes
(not shown)
DIMENSIONS:

A (inches)	Number of Vanes
$3-91 / 2$	2
$10-141 / 2$	3
$15-19$	4
$20-60$	5
over 60	12-inch maximum spacing

Note: Mitered 45° elbows (two gores) without vanes are also available. Designation is $\mathrm{SR}\left({ }^{*}\right) \mathrm{EM}-45$.

HEEL-TAPPED

90° ELBOW

DESIGNATION:

SR(*)ET3-90

DIMENSION

$\mathrm{R}=1.5 \mathrm{~A}$
$Z=0.086 \mathrm{~A}$
Maximum $C=A$

HEEL-TAPPED

 45° ELBOW

DESIGNATION:
 SR(*)ET3-45

DIMENSION
$\mathrm{R}=1.5 \mathrm{~A}$
$Z=0.348 \mathrm{~A}$
Maximum $\mathrm{C}=0.3 \mathrm{~A}$

STRAIGHT TEE

DESIGNATION:
 SR(*) T

DIMENSIONS:
$\mathrm{V}=\mathrm{C}+2$
Maximum $\mathrm{C}=\mathrm{A}$

CONICAL TEE

DESIGNATION:
SR(*)TC
DIMENSIONS:
$\mathrm{V}=\mathrm{C}+4$
Maximum $C=A-2$

LO-LOSS ${ }^{\text {TM }}$ TEE

DESIGNATION:
$\mathbf{S R}\left({ }^{*}\right) \mathbf{T L}$
DIMENSIONS:
$\mathrm{V}=\mathrm{C}+\mathrm{H}+2$
$J=C+2($ for $C \leq A-2)$
$\mathrm{J}=\mathrm{C}($ for $\mathrm{C}>\mathrm{A}-2)$
Maximum $C=A$

C (inches)	\mathbf{H} (inches)
$3-8$	4
$81 / 2-14$	7
$141 / 2-26$	10
27 or larger	13

TANGENTIAL TEE

DESIGNATION:
SR(*)TT

DIMENSIONS:
V $=\mathrm{C}+2$

REDUCING STRAIGHT TEE

DESIGNATION: SR(*)TR

DIMENSIONS:
$V=C+2$
Maximum $\mathrm{C}=\mathrm{A}$

REDUCING CONICAL TEE

DESIGNATION:
SR(*)TCR
DIMENSIONS:
$V=C+4$
Maximum $\mathrm{C}=\mathrm{A}-2$

REDUCING LO-LOSS TEE

DESIGNATION:
SR(*)TLR
DIMENSIONS:
$\mathrm{V}=\mathrm{C}+\mathrm{H}+2$
$J=C+2($ for $C \leq A-2)$
$J=C($ for $C>A-2)$
Maximum $C=A$

C (inches)	\mathbf{H} (inches)
$3-8$	4
$81 / 2-14$	7
$141 / 2-26$	10
27 or larger	13

REDUCING TANGENTIAL TEE 90°

DESIGNATION:

SROTTR
$\mathbf{(- 2 7 0}$ if $\left.\boldsymbol{\theta} \neq 90^{\circ}\right)$

DIMENSIONS:
V $=\mathrm{C}+2$

STRAIGHT LATERAL

DESIGNATION:
SR(*)L
($-\boldsymbol{\theta}$ if $\boldsymbol{\theta} \neq 45^{\circ}$)
DIMENSIONS:
$V=\frac{C}{\sin \theta}+2$
$Q=\frac{A}{2 \tan \theta}+\frac{C}{2 \sin \theta}+1$
$H=\frac{A}{2 \sin \theta}+\frac{C}{2 \tan \theta}+2$

Maximum $\mathrm{C}=\mathrm{A}$

CONICAL LATERAL

DESIGNATION:

SR(*)LC
($-\boldsymbol{\theta}$ if $\boldsymbol{\theta}=45^{\circ}$)

DIMENSIONS:
$V=\frac{(C+2)}{\sin \theta}+2$
$Q=\frac{A}{2 \tan \theta}+\frac{C+2 \alpha}{2 \sin \theta}+1$
$H=\frac{A}{2 \sin \theta}+\frac{C+2 \alpha}{2 \tan \theta}+4$

$$
\alpha=\frac{2}{\frac{(C+2)}{4 \tan \theta}+2}
$$

Maximum $\mathrm{C}=\mathrm{A}-3$ for $\mathrm{A} \leq 10$ A-4 for $10<A \leq 42$
A-5 for $\mathrm{A}>42$

DESIGNATION:
SR(*)LR
($-\theta$ if $\theta \neq 45^{\circ}$)

DIMENSIONS:

$$
\begin{aligned}
& V=\frac{C}{\sin \theta}+2 \\
& Q=\frac{A}{2 \tan \theta}+\frac{C}{2 \sin \theta}+1 \\
& H=\frac{A}{2 \sin \theta}+\frac{C}{2 \tan \theta}+2
\end{aligned}
$$

Maximum $\mathrm{C}=\mathrm{A}$

REDUCING CONICAL LATERAL

DESIGNATION:
SR(*)LCR
($-\theta$ if $\theta \neq 45^{\circ}$)

DIMENSIONS:

$$
\begin{aligned}
& V=\frac{(C+2)}{\sin \theta}+2 \\
& Q=\frac{A}{2 \tan \theta}+\frac{C+2 \alpha}{2 \sin \theta}+1
\end{aligned}
$$

$H=\frac{A}{2 \sin \theta}+\frac{C+2 \alpha}{2 \tan \theta}+4$

$$
\alpha=\frac{2}{\frac{(C+2)}{4 \tan \theta}+2}
$$

TAPERED BODY LATERAL

DESIGNATION:
SR(*)LP
$\left(-\theta\right.$ if $\left.\theta \neq 45^{\circ}\right)$

$$
\begin{aligned}
& V=\frac{C}{\sin \theta}-\frac{A-B}{2 \tan \theta}+2 \\
& Q=\frac{A-B}{2 V \tan \theta}+\frac{B}{2 \tan \theta}+\frac{C}{2 \sin \theta}+1 \\
& H=\frac{A-B}{2 V \tan \theta}+\frac{B}{2 \sin \theta}+\frac{C}{2 \tan \theta}+2
\end{aligned}
$$

STRAIGHT 90° CROSS

DESIGNATION:

SR(*)TX
($-\varphi$ if $\varphi=180^{\circ}$)
DIMENSIONS:
$\mathrm{V}=\mathrm{C}+2$
Maximum C or $\mathrm{D}=\mathrm{A}$

CONICAL 90° CROSS

DESIGNATION:

SR(*)TXC
($-\varphi$ if $\varphi \neq 180^{\circ}$)
DIMENSIONS:
$V=C+4$

Maximum C or $\mathrm{D}=\mathrm{A}-2$

LO-LOSS 90° CROSS

DESIGNATION:

SR(*)TXL
(- φ if $\varphi \neq 180^{\circ}$)
DIMENSIONS:
$\mathrm{V}=\mathrm{C}+\mathrm{H}_{\mathrm{C}}+2$
Note: To determine J_{C} or J_{D} dimension and maximum C or D , refer to LO-LOSS tee drawing.

C or D (inches)	\mathbf{H}_{C} or \mathbf{H}_{D} (inches)
$3-8$	4
$81 / 2-14$	7
$141 / 2-26$	10
27 or larger	13

REDUCING STRAIGHT 90° CROSS

DESIGNATION:
SR(*)TXR
(φ if $\varphi \neq 180^{\circ}$)
DIMENSIONS:
V $=\mathrm{C}+2$
Maximum C or $\mathrm{D}=\mathrm{A}$

REDUCING CONICAL 90° CROSS

DESIGNATION:
SR(*)TXCR

(- φ if $\varphi=180^{\circ}$)
DIMENSIONS:
V $=\mathrm{C}+4$
Maximum C or $\mathrm{D}=\mathrm{A}-2$

REDUCING LO-LOSS 90° CROSS

DESIGNATION:

SR(*)TXLR
($-\varphi$ if $\varphi \neq 180^{\circ}$)
DIMENSIONS:
V $=\mathrm{C}+\mathrm{H}_{\mathrm{c}}+2$
Note: To determine $J_{C}+J_{D}$ dimension and maximum C or D, refer to LO-LOSS tee drawing.

C or D (inches)	$\mathbf{H}_{\text {C }}$ and $\mathbf{H}_{\mathbf{D}}$ (inches)
$3-8$	4
$81 / 2-14$	7
$141 / 2-26$	10
27 or larger	13

LATERAL CROSS

DESIGNATION:
SROLX
($-\varphi$ if $\varphi \neq 180^{\circ}$,
$-\theta$ if $\theta \neq 45^{\circ}$)
DIMENSIONS:
$V=\frac{C}{\sin \theta}+2$
$Q=\frac{A}{2 \tan \theta}+\frac{C}{2 \sin \theta}+1$
$H_{C}=\frac{A}{2 \sin \theta}+\frac{C}{2 \tan \theta}+2$
$H_{D}=\frac{A}{2 \sin \theta}+\frac{D}{2 \tan \theta}+2$
Maximum C or $\mathrm{D}=\mathrm{A}$
[draw with gasketed taps and no beads on body]

Y-BRANCH

DESIGNATION:
SR(*) Y
($-\boldsymbol{\theta}$ if $\boldsymbol{\theta}=\mathbf{9 0}{ }^{\circ}$)
DIMENSIONS:
$H=\frac{A}{2 \tan (\theta / 2)}+1$
$m=\frac{A}{2} \tan (\theta / 4)$

Maximum $\mathrm{C}=\mathrm{A}$

REDUCING Y-BRANCH

DESIGNATION:
SR(*)YR
($-\boldsymbol{\theta}$ if $\boldsymbol{\theta}=90^{\circ}$)
DIMENSIONS:

$$
\begin{aligned}
& H=\frac{A}{2 \tan (\theta / 2)}+1 \\
& m=\frac{A}{2} \tan (\theta / 4)
\end{aligned}
$$

Maximum C or $\mathrm{D}=\mathrm{A}$

TAPERED Y-BRANCH

DESIGNATION:
SR(*)YP
($-\theta$ if $\boldsymbol{\theta}=90^{\circ}$)

DIMENSIONS:

$H=1.25 A$
L1 $=A$
L2 $=[1.25 \mathrm{~A} \times \cos (\mathrm{A} 1)]+[\mathrm{C} / 2 \times \sin (\mathrm{A} 1)]$
L3 $=[1.25 \mathrm{~A} x \cos (\mathrm{~A} 2)]+[\mathrm{D} / 2 \mathrm{x} \sin (\mathrm{A} 2)]$
O1 $=[1.25 \mathrm{~A} x \sin (\mathrm{~A} 1)]-[\mathrm{C} / 2 \times \cos (\mathrm{A} 1)]$
$\mathrm{O} 2=[1.25 \mathrm{~A} \times \sin (\mathrm{A} 2)]-\quad[\mathrm{D} / 2 \times \cos (\mathrm{A} 2)]$

Maximum C or $\mathrm{D}=\mathrm{A}$

VEE FITTING

DESIGNATION:
 SR(*)VE
 SR(*)VER
 reducing (shown)

DIMENSIONS:

$\mathrm{L} 1=\mathrm{A}$
$\mathrm{O} 1=\mathrm{O} 2=\mathrm{A}$
L2 $=A+(C / 2)$
L3 $=A+(D / 2)$

Maximum $\mathrm{C}=\mathrm{A}$

BULLHEAD TEE

DESIGNATION:

SR(*)TBV
with turning vanes
(shown)
SR(*)TB
without turning vanes
(not shown)
DIMENSIONS:
$V=A+2$

A (inches)	Number of Vanes
$3-61 / 2$	1
$7-91 / 2$	3
$10-60$	5
over 60	12-inch maximum spacing

REDUCING BULLHEAD TEE

DESIGNATION:
SR(*)TBVR
with turning vanes
(shown)
SR(*)TBR
without turning vanes
(not shown)
DIMENSIONS:
$V=A+2$

A (inches)	Number of Vanes
$3-61 / 2$	1
$7-91 / 2$	3
$10-60$	5
over 60	12-inch maximum spacing

SADDLE STRAIGHT TEE TAP

DESIGNATION:
SR(*)PTS

DIMENSIONS:
Specify duct size that tap will be attached to as A.

Maximum $C=A$

CONTOURED FLANGED CONICAL TAP

DESIGNATION:
SR(*)PTC
DIMENSIONS:
Specify duct size that tap will be attached to as A.

Maximum $C=A-2$

SADDLE CONICAL TEE TAP

DESIGNATION:
SR(*)PTCS
DIMENSIONS:
Specify duct size that tap will be attached to as A.

Maximum $C=A-2$

CONTOURED FLANGED LO-LOSS TEE TAP

DESIGNATION: SR(*)PTL

DIMENSIONS:

Specify duct size that tap will be attached to as A.
$\mathrm{J}=\mathrm{C}+2$
(for $C \leq A-2)$
$J=C$
(for $C>A-2$)

Maximum $C=A$

C (inches)	\mathbf{H} (inches)
$3-8$	4
$9-14$	7
$15-26$	10
27 or larger	13

SADDLE LO-LOSS TEE TAP

DESIGNATION:
 SR(*)PTLS

DIMENSIONS:

Specify duct size that tap will be attached to as A.
$J=C+2$
(for $C \leq A-2)$
$J=C$

$$
(\text { for } C>A-2)
$$

Maximum $\mathrm{C}=\mathrm{A}$

C (inches)	\mathbf{H} (inches)
$3-8$	4
$9-14$	7
$15-26$	10
27 or larger	13

CONTOURED FLANGED LATERAL TAP

DESIGNATION:

SR(*)PL
($-\boldsymbol{\theta}$ if $\boldsymbol{\theta}=45^{\circ}$)
DIMENSIONS:
Specify duct size that tap will be attached to as A.

Maximum $\mathrm{C}=\mathrm{A}$
$H=\frac{A}{2 \sin \theta}+\frac{C}{2 \tan \theta}+2$

SADDLE LATERAL TAP

DESIGNATION:

SR(*)PLS
($-\theta$ if $\theta \neq 45^{\circ}$)
DIMENSIONS:
Specify duct size that tap will be attached to as A.

Maximum $C=A$
$H=\frac{A}{2 \sin \theta}+\frac{C}{2 \tan \theta}+2$

CONTOURED FLANGED CONICAL LATERAL TAP

DESIGNATION:
SR(*)PLC
($-\boldsymbol{\theta}$ if $\boldsymbol{\theta}=45^{\circ}$)
(for $\theta \geq 30^{\circ}$)

DIMENSIONS:

Specify duct size that tap will be attached to as A.

$$
\begin{aligned}
\text { Maximum } C= & A-3 \text { for } A \leq 10 \\
& A-4 \text { for } A \leq 42 \\
& A-5 \text { for } A>42
\end{aligned}
$$

$H=\frac{A}{2 \sin \theta}+\frac{C+2 \alpha}{2 \tan \theta}+4$
$\alpha=\frac{2}{\frac{(C+2)}{4 \tan \theta}+2}$

DESIGNATION:

SR(*)PLCS
($-\theta$ if $\theta \neq 45^{\circ}$)
(for $\theta \geq 30^{\circ}$)

DIMENSIONS:

Specify duct size that tap will be attached to as A.
Maximum $C=A-3$ for $A \leq 10$
A-4 for $A \leq 42$
A-5 for $A>42$
$H=\frac{A}{2 \sin \theta}+\frac{C+2 \alpha}{2 \tan \theta}+4$
$\alpha=\frac{2}{\frac{(C+2)}{4 \tan \theta}+2}$

RECTANGULAR TAP

DESIGNATION:

SR(*)PTA
(Flange-in shown)
DIMENSIONS:
Specify tap size (W3 x H3) and duct size (A) that tap will be attached to and indicate end detail, i.e., flange-in, flange-out, or raw. Provide sketch of orientation if different than noted.

Default: TAPHT = 3 inches

RECTANGULAR LO-LOSS TAP

DESIGNATION:

SR(*)PTLA
(Flange-in shown)
DIMENSIONS:
Specify tap size (W3 x H3) and duct size (A) that tap will be attached to and indicate end detail, i.e., flange-in, flange-out, or raw. Provide sketch of orientation if different than noted.

$$
\begin{array}{rll}
\text { Default: TAPHT } & =6 \text { inches } \\
\text { SC } & =2 \text { inches } \\
\theta & =45^{\circ}
\end{array}
$$

Specify SC if TAPHT is other than 6 inches.

OFFSET

Note: Z should not exceed 0.75 A or $\theta>60^{\circ}$. If larger, use fabricated elbows and a straight length of duct.

DESIGNATION:
SR(*)Z
DIMENSIONS:
$V=2 A$
$Z=$ Must be specified

DESIGNATION:

SR(*)QR
DIMENSIONS:
$V=12,24,36$, or 48
A = Major axis of rectangular side
a = Minor axis of rectangular side

DESIGNATION:
SR(*)R

DESIGNATION:
SR(*)RE

DUCT-TO-DUCT COUPLING

DESIGNATION:
SR(*)C

A (inches)	Bead (inches)
$3-23$	$1 / 4$
over 23	$5 / 8$

FITTING-TO-FITTING COUPLING

DESIGNATION:
SR(*)CF

BELLMOUTH

GALVANIZED UNI-RING ${ }^{\text {TM }}$ ANGLE RING

DESIGNATION:
 SFUR**

** $=$ Diameter (eg 06, 14, etc.)

DIMENSIONS:

Nominal diameter $=6$ through 60-inches

Bolt Hole Dimensions: 6"-15" duct diameter (Holes $5 / 16^{\prime \prime}$ round)
$16 "-60$ " duct diameter (Holes $5 / 8 " \times 7 / 16^{\prime \prime}$ oval)

D Nominal Diameter (inches)	W Bolt Diameter (inches)	Number of Bolts	L Nominal Leg Height (inches)	F Nominal Flat Length (inches)	t Nominal Thickness (inches)	Nominal Weight Ring Only (pounds)	D Nominal Diameter (inches)
6.0	7.375	6	1.0625	0.9375	0.078	1.00	6.0
7.0	8.375	6	1.0625	0.9375	0.078	1.20	7.0
8.0	9.375	6	1.0625	0.9375	0.078	1.30	8.0
8.5	9.875	6	1.0625	0.9375	0.078	1.40	8.5
9.0	10.375	6	1.0625	0.9375	0.078	1.50	9.0
9.5	10.875	6	1.0625	0.9375	0.078	1.60	9.5
10.0	11.375	6	1.2500	1.1875	0.078	1.70	10.0
10.5	11.875	6	1.2500	1.1875	0.078	1.70	10.5
11.0	12.375	6	1.2500	1.1875	0.078	1.80	11.0
11.5	12.875	6	1.2500	1.1875	0.078	1.90	11.5
12.0	13.375	8	1.2500	1.1875	0.078	2.00	12.0
12.5	13.875	8	1.2500	1.1875	0.078	2.10	12.5
13.0	14.375	8	1.2500	1.1875	0.078	2.10	13.0
13.5	14.875	8	1.2500	1.1875	0.078	2.20	13.5
14.0	15.375	8	1.2500	1.1875	0.078	2.30	14.0
14.5	15.875	8	1.2500	1.1875	0.078	2.40	14.5
15.0	16.375	8	1.2500	1.1875	0.078	2.50	15.0
16.0	17.375	8	1.2500	1.1875	0.078	2.60	16.0
17.0	18.375	8	1.2500	1.1875	0.078	2.80	17.0
18.0	19.375	8	1.2500	1.1875	0.078	3.00	18.0
19.0	20.375	12	1.2500	1.1875	0.078	3.10	19.0
20.0	21.375	12	1.2500	1.1875	0.078	3.30	20.0
21.0	22.375	12	1.2500	1.1875	0.078	3.40	21.0
22.0	23.375	12	1.2500	1.1875	0.078	3.60	22.0
23.0	24.375	12	1.2500	1.1875	0.078	3.80	23.0
24.0	25.375	12	1.2500	1.1875	0.078	3.90	24.0
25.0	26.375	16	1.2500	1.1875	0.108	5.70	25.0
26.0	27.375	16	1.2500	1.1875	0.108	5.90	26.0
27.0	28.375	16	1.2500	1.1875	0.108	6.10	27.0
28.0	29.375 30	16	1.2500 1.2500	1.1875 1.1875	0.108	6.30	28.0
29.0 30.0	30.375 31.375	16 16	1.2500 1.2500	1.1875 1.1875 1.1875	0.108 0.108	6.60 6.80	29.0 300
30.0 31.0	31.375 32.375	16 16	1.2500 1.2500	1.1875 1.1875	0.108 0.108	6.80 7.00	30.0 31.0
32.0	33.375	16	1.2500	1.1875	0.108	7.30	32.0
33.0	34.375	16	1.2500	1.1875	0.108	7.50	33.0
34.0	35.375	16	1.2500	1.1875	0.108	7.70	34.0
35.0	36.375	16	1.2500	1.1875	0.108	7.90	35.0
36.0	37.375	16	1.2500	1.1875	0.108	8.10	36.0
37.0	38.375	24	1.2500	1.1875	0.108	8.40	37.0
38.0	39.375	24	1.2500	1.1875	0.108	8.60	38.0
39.0	40.375	24	1.2500	1.1875	0.108	8.80	39.0
40.0	41.375	24	1.2500	1.1875	0.108	9.00	40.0
41.0 42.0	42.375 43.375	24	1.2500 1.2500	1.1875 1.1875	0.108 0.108	9.30 9.50	41.0 42.0
43.0	44.375	24	1.2500	1.1875	0.108 0.138	9.50 12.40	42.0
44.0	45.375	24	1.2500	1.1875	0.138	12.70	44.0
45.0	46.375	24	1.2500	1.1875	0.138	13.00	45.0
46.0	47.375	24	1.2500	1.1875	0.138	13.30	46.0
47.0	48.375	24	1.2500	1.1875	0.138	13.60	47.0
48.0	49.375	24	1.2500	1.1875	0.138	13.90	48.0
49.0	50.375	24	1.2500	1.1875	0.138	14.10	49.0
50.0	51.375	24	1.2500	1.1875	0.138	14.40	50.0
51.0	52.375	24	1.2500	1.1875	0.138	14.80	51.0
52.0	53.375	24	1.2500	1.1875	0.138	15.00	52.0
53.0	54.375	24	1.2500	1.1875	0.138	15.30	53.0
54.0	55.375	24	1.2500	1.1875	0.138	15.60	54.0
55.0	56.375	24	1.2500	1.1875	0.138	15.90	55.0
56.0	57.375	24	1.2500	1.1875	0.138	16.20	56.0
57.0	58.375	24	1.2500	1.1875	0.138	16.50	57.0
58.0	59.375	24	1.2500	1.1875	0.138	16.80	58.0
59.0	60.375	24	1.2500	1.1875	0.138	17.00	59.0
60.0	61.375	24	1.2500	1.1875	0.138	17.30	60.0

APPLIED DUCT CONNECTOR

Applied Connector at Both Ends

Applied Connector at One End

Note: Customer-specified duct length shall be the face-to-face or end-to-face dimension. Standard coil widths are 60 and 72 -inch. When either of these lengths are requested on longitudinal seam duct with an angle ring, the ring is pulled $1 / 2$ inch for welding, and the overall length will finish $1 / 2$ inch longer. For example, a 60 -inch length of longitudinal seam duct will finish 61 -inches if iron angle rings are welded onto both ends. On all other applied connectors, the overall length does not change.

VAN STONE DUCT CONNECTOR

Notes: 1. Customer-specified duct length shall be the flange-face-to-flange-face or end-to-flange-face length.
2. Avoid Van Stone assemblies on spiral duct.
3. Use at least one end-to-face duct section for field adjustment.

Applied Connector at One End
4. Standard coils widths are 60 and 72 -inch. When either of these lengths are requested with a Van Stone end, the length will be reduced $1 / 2$-inch for each end which requires the Van Stone. For example, a 60 -inch length of duct with Van Stone connectors on both ends will finish 59 inches.

APPLIED AND VAN STONE FITTINGS CONNECTORS

Van Stone Connector on Fitting End

Applied Connector on Fitting End

Type of Connector	A (inches)	S (inches)
Van Stone	$5-9$	$11 / 2$
Van Stone	$91 / 2-72$	$31 / 2$
Applied	$3-90$	Specify face to face distance

Notes:

1. Customer to specify face-to-face dimensions for nonstandard fittings construction (i.e., nonstandard centerline radius on elbow or tap and body extensions on divided-flow fittings).
2. The bead is shown for reference only. Fittings requiring connectors are pipe sized and do not require a bead.
3. For gored elbows >22-inches, refer to page 12 showing gored elbows.

STANDARD ASSEMBLY DRAWING

Looking through B:

A = Diameter large end
$B=$ Diameter small end (if reducing)
C $=$ Diameter of first tap
D = Diameter of second tap
$\mathrm{E}=$ Diameter of third tap
$H_{E}=$ Tap height of third tap (only when nonstandard height)
$\mathrm{L}=$ Length of duct
$L_{C}=$ Dimension to first tap
$L_{D}=$ Dimension to second tap
$L_{E}=$ Dimension to third tap
$L_{R}=$ Reducer length
$Z_{C}=$ Offset position of first tap
$Z_{D}=$ Offset position of second tap
$Z_{E}=$ Offset position of third tap
$\theta=$ Location (in degrees) of lateral tap
$\varphi_{C}=$ Location (in degrees) of first tap
$\varphi_{D}=$ Location (in degrees) of second tap
$\varphi_{\mathrm{E}}=$ Location (in degrees) of third tap

Looking through A:

$\varphi_{C}=270^{\circ}$	$Z_{C}=X,-X$
$\varphi_{D}=90^{\circ}$	$Z_{D}=0$
$\varphi_{E}=270^{\circ}$	$Z_{E}=0$

Notes:

1. $X=$ specified distance
2. The end view is located to the right of the plan view if looking through the A end.
3. The end view is located to the left of the plan view if looking through the B end.
4. All taps, except for conical taps, are measured from the right hand side to the first end of the tap. Conical taps are measured from the right hand side (e.g. L_{E}) from the centerline of the tap.
[^2]
McGill AinfFlow ณนc

An enterprise of United McGill Corporation Founded in 1951

Corporate Headquarters

One Mission Park
Groveport, Ohio 43125-1149
614/836-9981, Fax: 614/836-9843
E-mail: marketing @ mcgillairflow.com
Web site: mcgillairflow.com

[^0]: 1. Except as noted, McGill AirFlow single-wall, round duct and fittings are available with the following diameters: 3 - through 15 -inch diameters in $1 / 2$-inch-diameter increments, 16 - through 38 -inch diameters in 1 -inch-diameter increments, and 40 through 90 -inch diameters in 2 -inch-diameter increments.
 2. Standard lengths of round UNI-SEAL and UNI-RIB duct are 10, 12, and 20 feet; longer lengths are available on special order. Standard lengths of round longitudinal seam duct are 5 and 6 feet.
 3. Single-wall, round duct and fittings are also available in carbon steel, paintable galvanized steel, and aluminized steel.
 4. UNI-COAT ${ }^{\oplus}$ single-wall, round duct and fittings (polyvinyl-chloride-coated galvanized steel) are available on special order.
 5. Aluminum single-wall, round duct and fittings are available in larger diameters and greater metal thicknesses on special order.
 6. Round longitudinal seam duct is available in diameters smaller than 8 inches on special order.
 7. Fittings 16 -gauge (Aluminum - 0.090 inch) or heavier are fully welded.
 ${ }^{8 .}$ See Table 3 for the full range of available spiral duct diameters by thickness.
[^1]: ${ }^{1}$ Thicker material may be available in some diameter ranges; check with your local sales office.
 ${ }^{2}$ Aluminum single-wall, round, spiral duct is available in larger diameters on special order.

[^2]: UNI-RIB ${ }^{\circledR}$ and UNI-COAT ${ }^{\circledR}$ are registered trademarks, and UNISEAL ${ }^{\text {TM }}$, United Duct Sealer ${ }^{\text {TM }}$, UNI-SEAM ${ }^{\text {TM }}$, LO-LOSS ${ }^{\text {TM }}$, and UNIRING ${ }^{\text {TM }}$ are trademarks of United McGill Corporation.

 The products depicted in these dimension sheets were current at the time of publication. As a quality conscious manufacturer, McGill AirFlow Corporation is constantly seeking ways to improve its products to better serve its customers. Therefore, all designs, specifications, and product features are subject to change without notice.

