

An enterprise of United McGill Corporation - Founded in 1951

One Mission Park Groveport, Ohio 43125-1149 614/836-9981, Fax: 614/836-9843 E-mail: mcgillairflow@compuserve.com Web site: http://www.mcgillairflow.com

Single-Wall, and Single-Wall Lined, Rectangular Duct and Fittings Dimensions

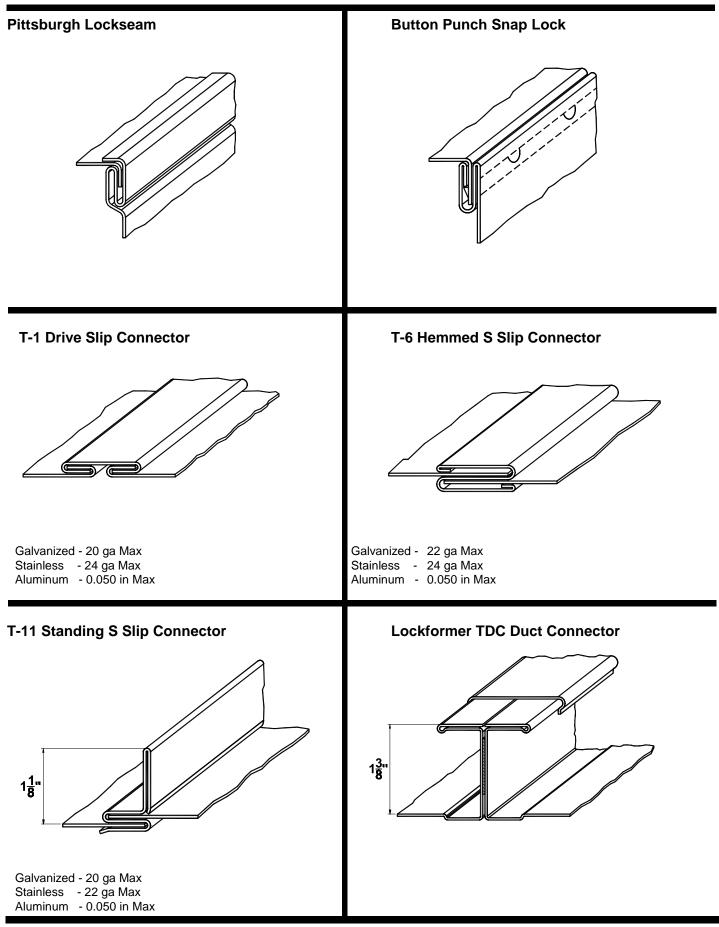
McGill AirFlow Corporation has a complete line of single-wall and single-wall lined, rectangular duct and fittings. The internally-lined product incorporates a flexible fiberglass insulation with an erosion-resistant coating on the air-side surface. The insulation is available in $\frac{1}{2}$, 1, 1 $\frac{1}{2}$ and 2-inch thicknesses and has thermal and acoustical properties comparable to the double-wall duct construction.¹

 Table 1 - Single-wall, Rectangular Duct - Available Sizes, Materials, and Thicknesses

Construction ²	Materials	Thicknesses		
UNI-SEAL [™] Duct	Galvanized Steel	28-18 gauge ³		
(Pittsburgh lockseam)	Stainless Steel	26-22 gauge ³		
	Aluminum	0.032-0.050 inch		
UNI-SEAL Duct	Galvanized Steel	28-20 gauge		
(Button Punch Snap Lock)	Stainless Steel	26-22 gauge		

Table 2 - Single-wall, Rectangular Duct and Fittings - Available Connectors

End Connectors	5-Foot Duct Length	6-Foot Duct Length
Raw End	60 inches	72 inches
S and Drive Slips	59 inches	71 inches
TDC [™]	56 1/4 inches	68 1/4 inches
Applied Connectors	60 1/4 inches	72 1/4 inches


^{1.} The standard insulation density is approximately 1.5 pcf. Other insulation densities may be available, dependent on the insulation thickness; check with you local sales office.

^{2.} Fully welded rectangular duct is available on special order.

^{3.} Standard rectangular duct is made on an automated coil line and is limited to the gauges shown in Table 1. Fittings and non-standard duct with the Pittsburgh lockseam are available in heavier gauges. Galvanized steel fittings are available to 14 ga with the Pittsburgh lockseam construction at some locations. Check with your local sales office for pricing and availability.

McGill Air Flow Corporation

Duct and Fitting Construction

Duct and Fitting Construction

Applied Duct Connector

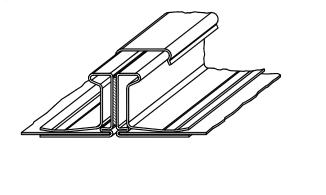


Table 3 - Single Wall, Rectangular Duct - Assembly Options

Construction	Size Limitations ¹
Fully Assembled	none
L-Shaped	20 inches \leq W + H \leq 120 inches ^{2,3}
Wrap Around	W + H < 20

1

Check with your local sales office for pricing and availability. Unfinished dimension. With longitudihal seam, finished maximum will be about 1- to 2- inch less. Some plant's minimum W + H dimension may be larger than 20 inches. 2

³ W is the main width. H is the main depth. See dimensioning below.

Dimensioning

(All alphanumeric dimensions are in inches, all angles are in degrees)

W1 H1 W2 H2 W3, W4 H3, H4 SA, SB, SC, SD THR		Main width (larger) as seen in plan view Main depth associated with W1 Main width (smaller) as seen in plan view Main depth associated with W2 Branch widths as seen in plan view Branch depths associated with W3 and W4 Fitting straight length extensions Throat radius (W1 standard)
THR		Throat radius (W1 standard)
V Z, LZ, RZ TD, TD3, TD4 θ	-	······································
0	-	Angular measurements (refer to specific drawings)

General Notes:

- Unless ordered otherwise, all UNI-SEAL single-wall, rectangular duct and fittings shall be constructed in accordance with the 1995 SMACNA HVAC Duct Construction Standards(DCS) and Addendum No. 1 dated November 1997.
- Dimensions other than the standard dimensions shown are to be specified.
- Dimensions other than width and depth are held within a 1/4-inch tolerance.
- Width (W) and depth (H) dimensions are based on the orientation of the ductwork as shown in plan view of the drawing. The width is the dimension seen and the depth is the dimension unseen (refer to elevation details to see dimension). For example, a duct dimension of 24 x 12 in the plan view means W = 24 inches and H = 12 inches, whereas a duct dimension of 12 x 24 means W = 12 inches and H = 24 inches.
- W1 ≥ W2 regardless of the direction of airflow. Directional orientation of the fitting is determined when viewing the fitting from the W1 end.
- Single-wall lined, rectangular duct dimensions are for the metal shell.
- All drawings are shown with the TDC end connector. For other end configurations, replace the T in the third designation as described below. End connectors are illustrated on pages 2 and 3.
- Unless otherwise specified, lined rectangular ductwork will incorporate a 1-inch flexible fiberglass insulation with an erosion-resistant coating on the air-side surface.
- Round and flat oval taps are available in lieu of rectangular. Specify dimensions.

Designations:

McGill AirFlow uses a designation system that simplifies product nomenclature. Most of our products can be accurately identified using a concise alphanumeric designator. Each character in the designation defines a characteristic of the product.

Example: IAT4TBR refers to a single-wall, lined (I), rectangular (A), TDC end connectors(T), 4 in wg pressure class (4), reducing bullhead tee (TBR).

1st Character: Wall Configuration - IAT4TBR

- **S** = Single-wall
- I = Single-wall, lined $(\frac{1}{2}, 1, 1\frac{1}{2}, \text{ or } 2 \text{ inch only})$

2nd Character: **Shape - IA**T4TBR

A = Rectangular

3rd Character: End Configuration - IAT4TBR

- **T** = TDC Transverse Duct Connector
- **S** = S and drive slips
- **F** = Four-bolt applied connector
- R = Raw end

4TH Character: **Pressure Class -** IAT**4**TBR

- $A = \pm \frac{1}{2}$ inch wg
- $1 = \pm 1$ inch wg
- $2 = \pm 2$ inches wg
- $3 = \pm 3$ inches wg
- $4 = \pm 4$ inches wg
- $6 = \pm 6$ inches wg
- $\mathbf{0} = \pm 10$ inches wg
- N = Nonstandard gauge
- Notes: 1. When ordering duct or fittings, specify A, 1, 2, 3, 4, 6, 0, or N in the * position of the designation.
 - 2. Pressure ranges listed for A, 1, 2, 3, 4, 6, and 0 are based on 1995 SMACNA Duct Construction Standards (galvanized only).
 - 3. SMACNA is the Sheet Metal and Air Conditioning Contractors National Association.

5th and Subsequent Characters: **Product Type -** IAT4**TBR**

TBR = Reducing Bullhead Tee

_		ized and Pain alvanized Stee		Nongal	vanized Carbon	Steel	Stainless Steel (304 or 316)				
Gauge	Minimum Thickness (inches)	Nominal Thickness (inches)	Thickness Weight		MinimumNominalThicknessThickness(inches)(inches)		Minimum Thickness (inches)	Nominal Thickness (inches)	Nominal Weight (Ib/sq ft)		
28	0.0157	0.0187	0.781	0.0129	0.0149	0.625	0.0136	0.0156	0.656		
26	0.0187	0.0217	0.906	0.0159	0.0179	0.750	0.0158	0.0188	0.788		
24	0.0236	0.0276	1.156	0.0209	0.0239	1.000	0.0220	0.0250	1.050		
22	0.0296	0.0336	1.406	0.0269	0.0299	1.250	0.0273	0.0313	1.313		
20	0.0356	0.0396	1.656	0.0329	0.0359	1.500	0.0335	0.0375	1.575		
18	0.0466	0.0516	2.156	0.0438	0.0478	2.000	0.0450	0.0500	2.100		
16	0.0575	0.0635	2.656	0.0548	0.0598	2.500	0.0565	0.0625	2.625		
14	0.0705	0.0785	3.281	0.0697	0.0747	3.125	0.0711	0.0781	3.281		
12	0.0994	0.1084	4.531	0.0986	0.1046	4.375	0.1000	0.1094	4.594		
10	0.1292	0.1382	5.781	0.1285	0.1345	5.625	0.1286	0.1406	5.906		

Aluminum 3003-H14											
Minimum Thickness (inches)	Nominal Thickness (inches)	Nominal Weight (Ib/sq ft)									
0.0230	0.025	0.356									
0.0295	0.032	0.456									
0.0365	0.040	0.570									
0.0465	0.050	0.713									
0.0595	0.063	0.898									
0.0755	0.080	1.140									
0.0855	0.090	1.283									
0.0945	0.100	1.426									
0.1195	0.125	1.782									

Table 5 - ASTM Material Specifications

Standard material	Туре	ASTM Number
Galvanized Steel		A653, A924
Stainless Steel	304, 304L, 316, 316L	A167, A480
Nongalvanized Carbon Steel	18 - 28 gauge	A366, A568, A569
Aluminum	3003-H14	B209
Aluminized	Туре 1	A463

BEADING

(Crossbreaking available)

Duct or Fitting Width (inches)	12	24	36	48	60	72	84	96	108	120
Minimum Duct or Fitting Length Where Beading is Required (inches)	None	60	40	30	24	20	17	15	13	12

Note:

- 1. Crossbreaking may be used instead of beading
- 2. Beading shall be 6 inches in from duct or fitting end and 12 inches between beads.
- 3. It is not necessary to bead (or crossbreak) all sides unless each dimension requires it.
- 4. Bead direction may be random for fittings.
- 5. Beading or crossbreaking does not affect reinforcement spacing.
- 6. Beading (or crossbreaking) is not required for the following:
 - Duct or fitting dimensions less than 19 inches in width.
 - Sides which have less than 10 square feet.
 - Internally lined duct or fittings.
 - Externally wrapped duct or fittings.
 - Duct or fittings heavier than 20 gauge.
 - Duct or fittings for 4 inch wg or more pressure class.

Gauge/Reinforcement Tables:

The gauge of rectangular duct and fittings is based on the pressure classification, the major dimension, and the reinforcement (type and quantity) used per SMACNA(DCS) and Addendum No. 1 dated November 1997 for internal reinforcement. Tables 6 through 11 were developed for specific lengths of 5- or 6- foot lengths. Tables 6 through 9 use angle iron external reinforcement. Tables 10 and 11 use tie rod internal reinforcement. A 'light gauge/heavy reinforcement' and a 'heavy gauge/light reinforcement' combination are given for external reinforcement for the 5- and 6-feet. These tables are illustrative of the possible combinations of gauge/reinforcement and are not all inclusive. Other combinations may be more economical depending on size range, manufacturing capabilities, reinforcement availability and cost. In addition, shorter lengths may require less reinforcement. Fittings must have gauge/reinforcements similar to duct but are often shorter in length.

Maximum					Pressure	e Classificat				<u> </u>				
Major Axis			±1 ir	±1 inch wg		±2 inch wg		nch wg	±4 in	ch wg	±6 inch wg		±1() inch wg
(inches)	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC
(,	04	IR	04	IR	07	IR	04	IR	07	IR	07	IR	07	IR
10	26	T6/T1	26	T6/T1	26	T6/T1	26	T11/T1	26	T11/T1	26	T11/T1(R) 1R	26	T11/T1(R) 1R
12	26	T6/T1	26	T6/T1	26	T11/T1	26	T11/T1	26	T11/T1	26	T11/T1(R)	26	T11/T1(R)
.2	20		20		20		20		20		20	1R	20	1R
18	26	T6/T1	26	T11/T1	26	T11/T1	26	T11/T1	26	TDC	26	TDC	24	TDC
10	20		20		20		20	R1	20	1R	20	1R	24	1R
24	26	TDC	26	TDC	26	TDC	26	TDC	26	TDC	24	TDC	22	TDC
24	20		20		20		20	R1	20	1R	24	1R	~~	1R
26	26	TDC	26	TDC	26	TDC	26	TDC	26	TDC	24	TDC	22	TDC
20	20		20		20		20	R1	20	2R	24	1R	~~	1R
28	26	TDC	26	TDC	26	TDC	26	TDC	26	TDC	22	TDC	24	TDC
20	20		20		20	1R	20	R1	20	2R	22	1R	24	2R
30	26	TDC	26	TDC	26	TDC	24	TDC	26	TDC	22	TDC	24	TDC
30	20		20		20	1R	24	R1	20	2R	22	1R	27	2R
36	26	TDC	26	TDC	26	TDC	24	TDC	26	TDC	20	TDC	22	TDC
30	20		20	1R	20	1R	24	R1	20	2R	20	1R	~~	2R
42	26	TDC	26	TDC	24	TDC	22	TDC	24	TDC	22	TDC	20	TDC
42	20		20	1R	24	1R	22	R1	24	2R	22	2R	20	2R1
48	26	TDC	24	TDC	22	TDC	24	TDC	24	TDC	22	TDC	18	TDC
40	20	1R	24	1R	~~~	1R	24	2R	24	2R	22	2R1	10	2R1
54	26	TDC	24	TDC	22	TDC	24	TDC	22	TDC	20	TDC	18	TDC
54	20	1R	24	1R	~~~	1R	24	2R	~~~	2R	20	2R1	10	2R1
60	24	TDC	24	TDC	24	TDC	22	TDC	22	TDC	20	TDC	18	TDC
00	24		24	1R	24	2R	22	2R	~~~	2R1	20	2R1	10	2R2
72	24	TDC	22	TDC	22	TDC	22	TDC	20	TDC	18	TDC	18	TDC
12	24	1R	22	1R	~~~	2R	22	2R1	20	2R1	10	2R1	10	3R2
84	22	TDC	22	TDC	22	TDC	20	TDC	18	TDC	18	TDC	N/A	
04	22	1R	22	2R	~~~	2R1	20	2R1	10	2R1	10	3R2	IN/A	
96	22	TDC	40	TDC	20	TDC	18	TDC	40	TDC	40	TDC	N/A	
90	22	1R	18	1R	20	2R1	10	2R1	1 18	2R2	18	3R2	IN/A	
108	18	TDC	18	TDC	18	TDC	18	TDC	18	TDC	18	TDC	N/A	
100	10	1R	10	2R1	10	2R1	10	2R2	10	2R2	10	3R2	AWA	
120	18	TDC	10	TDC	10	TDC	10	TDC	10	TDC	10	TDC	N/A	
120	δI	1R	18	2R1	18	2R2	18	2R2	18	2R2	18	3R2t	IN/A	

 Table 6 UNI-SEAL Rectangular Light Gauge/Heavy Reinforcement for 5-Foot Joints Using External Angle Reinforcement

The above table meets SMACNA 1995 duct construction standards for galvanized or stainless steel duct and fittings. **EC** is the end connector type. See page 2 for a description of the end connector types used in the table (**T1**, **T6**, **T11** and **TDC**). When **T1**, **T6** or **T11** are listed, the **T1** is used on the minor dimension and the **T6** or **T11** are used on the major dimension. The **T1** and **T6** end connectors are manufactured from 24 ga (0.040 inch for aluminum) or heavier. The **T11** end connector is manufactured from 22 ga (0.050 inch for aluminum) or heavier. When **TDC** (transverse duct connector by Lockformer) is indicated, it is an integral part of the duct or fitting and is roll formed on all sides of the end connections. **IR** is the intermediate reinforcement required. See Table 12 for a description of reinforcements and how they are applied. Both the major and the minor dimensions need to be checked for reinforcement requirements. Table 12 illustrates reinforcement when just the major dimension needs reinforced and when both the major and minor dimensions need reinforced. Fittings must be reinforced the same as duct. Determine the equivalent aluminum thickness requirements by multiplying the thickness in the above table by 1.44 and using the next heaviest available material. See Table 4 to determine the thickness by gauge and Table 1 to determine the gauge/thickness availability for various constructions.

Table 7 -	UNI-SEAL Rectangular Heavy Gauge/Light Reinforcement for 5-Foot Joints Using External Angle
	Reinforcement

					Pressure	Classificat	tion (nor	ninal 60-inc	h duct l	engths)				
Maximum Major Axis	±1⁄2 i	±½ inch wg		nch wg	±2 i	nch wg	±3 i	nch wg	±4 inch wg		±6 inch wg		±10	inch wg
(inches)	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC
(07	IR	07	IR	54	IR	07	IR	54	IR	5	IR	07	IR
10	26	T6/T1	26	T6/T1	26	T6/T1	26	T11/T1	26	T11/T1	24	T11/T1	22	T11/T1(R)
12	26	T6/T1	26	T6/T1	26	T11/T1	26	T11/T1	26	T11/T1	24	T11/T1	22	T11/T1(R)
18	26	T6/T1	26	T11/T1	26	T11/T1	24	T11/T1	24	TDC	22	TDC	20	TDC
24	26	TDC	26	TDC	26	TDC	24	TDC	22	TDC	22	TDC	18	TDC
26	26	TDC	26	TDC	26	TDC	24	TDC	22	TDC	20	TDC	18	TDC
28	26	TDC	26	TDC	24	TDC	22	TDC	22	TDC	18	TDC	20	TDC 1R
30	26	TDC	26	TDC	24	TDC	22	TDC	20	TDC	18	TDC	18	TDC 1R
36	26	TDC	24	TDC	22	TDC	20	TDC	18	TDC	20	TDC 1R	18	TDC 1R
42	26	TDC	24	TDC	20	TDC	18	TDC	20	TDC 1R	18	TDC 1R	20	TDC 2R1
48	24	TDC	22	TDC	18	TDC	20	TDC 1R	18	TDC 1R	22	TDC 2R1	18	TDC 2R1
54	24	TDC	22	TDC	18	TDC	20	TDC 1R	18	TDC 1R	20	TDC 2R1	18	TDC 2R1
60	24	TDC	20	TDC	20	TDC	18	TDC	22	TDC	20	TDC	18	TDC
72	22	TDC	18	TDC	18	1R TDC	22	1R TDC	20	2R1 TDC	18	2R1 TDC	18	2R2 TDC
84	18	TDC	18	TDC	22	1R TDC	20	2R1 TDC	18	2R1 TDC	18	2R1 TDC	N/A	3R2
96	18	TDC	18	1R TDC	20	2R1 TDC	18	2R1 TDC	18	2R1 TDC	18	3R2 TDC	N/A	
	-	TDC	_	1R TDC		2R1 TDC	-	2R1 TDC		2R2 TDC		3R2 TDC	-	
108	18	1R TDC	18	2R1 TDC	18	2R1 TDC	18	2R2 TDC	18	2R2 TDC	18	3R2 TDC	N/A	
120	18	1R	18	2R1	18	2R2	18	2R2	18	2R2	18	3R2t	N/A	

The above table meets SMACNA 1995 duct construction standards for galvanized or stainless steel duct and fittings. **EC** is the end connector type. See page 2 for a description of the end connector types used in the table (**T1**, **T6**, **T11** and **TDC**). When **T1**, **T6** or **T11** are listed, the **T1** is used on the minor dimension and the **T6** or **T11** are used on the major dimension. The **T1** and **T6** end connectors are manufactured from 24 ga (0.040 inch for aluminum) or heavier. The **T11** end connector is manufactured from 22 ga (0.050 inch for aluminum) or heavier. When **TDC** (transverse duct connector by Lockformer) is indicated, it is an integral part of the duct or fitting and is roll formed on all sides of the end connections. **IR** is the intermediate reinforcement required. See Table 12 for a description of reinforcements and how they are applied. Both the major and the minor dimension needs reinforced and when both the major and minor dimensions need reinforcement when just the major dimension needs reinforced and when both the major and minor dimensions need reinforced. Fittings must be reinforced the same as duct. Determine the equivalent aluminum thickness requirements by multiplying the thickness in the above table by 1.44 and using the next heaviest available material. See Table 4 to determine the thickness by gauge and Table 1 to determine the gauge/thickness availability for various constructions.

Maximum	Pressure Classification (nominal 72-inch duct lengths)													
Maximum Major Axis	±1/2	inch wg	ti 1±	nch wg	±2 i	nch wg	±3 iı	nch wg	±4 in	ch wg	±6	inch wg	±10) inch wg
(inches)	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC
()	07	IR	04	IR	UA.	IR	07	IR	07	IR	07	IR	5	IR
10	26	T6/T1	26	T6/T1	26	T6/T1	26	T11/T1	24	T11/T1	26	T11/T1(R)	26	T11/T1(R)
										1R		1R		1R
12	26	T6/T1	26	T6/T1	24	T6/T1	26	T11/T1	24	T11/T1	26	T11/T1(R)	26	T11/T1(R)
								1R		1R		1R		1R
18	26	T6/T1	26	T11/T1	24	T11/T1	24	T11/T1	26	TDC	26	TDC	24	TDC
								1R		1R		1R	┝───┤	1R
24	26	TDC	26	TDC	26	TDC	26	TDC	26	TDC	24	TDC	22	TDC
						1R	_	1R		2R		1R		2R
26	26	TDC	26	TDC	26	TDC	26	TDC	26	TDC	24	TDC	22	TDC
-						1R	_	1R		2R		2R		2R
28	26	TDC	26	TDC	26	TDC	26	TDC	26	TDC	24	TDC	22	TDC
-						1R	_	2R	-	2R		2R		2R
30	26	TDC	26	TDC	26	TDC	26	TDC	26	TDC	24	TDC	22	TDC
						1R	_	2R		2R		2R		2R
36	26	TDC	26	TDC	24	TDC	24	TDC	24	TDC	22	TDC	24	TDC
				1R		1R		2R		2R		2R		3R
42	26	TDC	26	TDC	24	TDC	24	TDC	22	TDC	22	TDC	22	TDC
		1R		1R		1R		2R		2R		3R		3R1
48	26	TDC	26	TDC	24	TDC	22	TDC	20	TDC	22	TDC	22	TDC
		1R		1R		2R		2R		2R		3R		3R1
54	26	TDC	24	TDC	22	TDC	20	TDC	24	TDC	22	TDC	20	TDC
		2R		1R		2R		2R		3R1		3R1		3R1
60	26	TDC 2R	22	TDC 1R	22	TDC 2R	20	TDC 2R	24	TDC 3R1	22	TDC 3R1	20	TDC 3R1
		TDC		TDC		TDC		TDC		TDC		TDC		TDC
72	24	2R	22	1DC 1R	22	2R	24	3R1	22	3R1	20	3R1	18	3R2
		TDC				TDC		TDC		TDC		TDC		JKZ
84	22	1DC 1R	20	TDC 2R	22	3R1	22	3R1	20	3R1	18	3R2	N/A	
		TDC		TDC		TDC		TDC		TDC		TDC		
96	22	2R	20	2R1	22	3R1	20	3R1	20	3R1	18	3R2	N/A	
		TDC		TDC		TDC		TDC		TDC		TDC		
108	18	1R	18	2R1	18	2R2	18	3R2	18	3R2	18	3R2	N/A	
465	40	TDC	42	TDC	40	TDC	40	TDC	40	TDC	40	TDC		
120	18	2R	18	2R1	18	3R1	18	3R2	18	3R2	18	3R2t	N/A	

 Table 8 UNI-SEAL Rectangular Light Gauge/Heavy Reinforcement for 6-Foot Joints Using External Angle Reinforcement

The above table meets SMACNA 1995 duct construction standards for galvanized or stainless steel duct and fittings. **EC** is the end connector type. See page 2 for a description of the end connector types used in the table (**T1**, **T6**, **T11** and **TDC**). When **T1**, **T6** or **T11** are listed, the **T1** is used on the minor dimension and the **T6** or **T11** are used on the major dimension. The **T1** and **T6** end connectors are manufactured from 24 ga (0.040 inch for aluminum) or heavier. The **T11** end connector is manufactured from 22 ga (0.050 inch for aluminum) or heavier. When **TDC** (transverse duct connector by Lockformer) is indicated, it is an integral part of the duct or fitting and is roll formed on all sides of the end connections. **IR** is the intermediate reinforcement required. See Table 13 for a description of reinforcements and how they are applied. Both the major and the minor dimension needs reinforced and when both the major and minor dimensions need reinforcement when just the major dimension needs reinforced and when both the major and minor dimensions need reinforced. Fittings must be reinforced the same as duct. Determine the equivalent aluminum thickness requirements by multiplying the thickness in the above table by 1.44 and using the next heaviest available material. See Table 4 to determine the thickness by gauge and Table 1 to determine the gauge/thickness availability for various constructions.

Table 9 -	UNI-SEAL Rectangular Heavy Gauge/Light Reinforcement for 6-Foot Joints Using External Angle
	Reinforcement

. .		Pressure Classification (nominal 72-inch duct lengths)													
Maximum Major Axis (inches)	±½ i	±1⁄2 inch wg		±1 inch wg		±2 inch wg		±3 inch wg		±4 inch wg		±6 inch wg		±10 inch wg	
	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC	GA	EC	
(UA.	IR	67	IR	97	IR	97	IR	UA.	IR	5	IR	94	IR	
10	26	T6/T1	26	T6/T1	26	T6/T1	26	T11/T1	22	T11/T1	22	T11/T1(R)	26	T11/T1(R)	
														1R	
12	26	T6/T1	26	T6/T1	24	T6/T1	24	T11/T1	22	T11/T1	22	T11/T1(R)	26	T11/T1(R)	
		T6/T1		T6/T1		T11/T1		T11/T1		TDC		TDC		1R TDC	
18	26	10/11	22	10/11	24	111/11	18	111/11	22		20	TDC	18	TDC	
24	26	TDC	26	TDC	24	TDC	22	TDC	22	TDC	20	TDC	18	TDC	
24	20		20		24		22		22		20		10		
26	26	TDC	26	TDC	24	TDC	22	TDC	22	TDC	18	TDC	20	TDC	
	20													1R	
28	26	TDC	26	TDC	22	TDC	20	TDC	20	TDC	18	TDC	18	TDC	
												TDC	-+	1R	
30	26	TDC	26	TDC	22	TDC	20	TDC	18	TDC	18		18	TDC 1R	
		TDC		TDC		TDC		TDC		TDC		TDC		TDC	
36	26	100	24	100	20	100	18	100	18	100	18	1R	20	2R	
10		TDC		TDC		TDC		TDC		TDC	10	TDC		TDC	
42	24		22		18		18		20	1R	18	1R	18	2R1	
48	24	TDC	20	TDC	18	TDC	20	TDC	18	TDC	18	TDC	18	TDC	
40	24		20		10		20	1R	10	1R	10	2R1	18	2R1	
54	22	TDC	20	TDC	20	TDC	18	TDC	18	TDC	18	TDC	20	TDC	
•••						1R		1R		2R		2R1		3R1	
60	22	TDC	20	TDC	20	TDC	18	TDC	20	TDC	18	TDC	20	TDC	
		TDC		TDC		1R TDC		1R TDC		2R TDC		2R1 TDC		3R1 TDC	
72	20	100	18	100	18	1DC 1R	20	2R1	18	2R	20	3R1	18	3R2	
		TDC		TDC		TDC		TDC		TDC		TDC		UNE	
84	18		18	1R	20	2R1	18	2R1	20	3R1	18	3R2	N/A		
		TDC		TDC	40	TDC	40	TDC		TDC	40	TDC			
96	20	1R	20	1R	18	2R1	18	2R2	20	3R1	18	3R2	N/A		
108	18	TDC	18	TDC	18	TDC	18	TDC	18	TDC	18	TDC	N/A		
100	10	1R	10	2R1		2R2		3R2		3R2	10	3R2	17/7		
120	18	TDC	18	TDC	18	TDC	18	TDC	18	TDC	18	TDC	N/A		
	-	2R	-	2R1	-	3R1	-	3R2	-	3R2	-	3R2t			

The above table meets SMACNA 1995 duct construction standards for galvanized or stainless steel duct and fittings. **EC** is the end connector type. See page 2 for a description of the end connector types used in the table (**T1**, **T6**, **T11** and **TDC**). When **T1**, **T6** or **T11** are listed, the **T1** is used on the minor dimension and the **T6** or **T11** are used on the major dimension. The **T1** and **T6** end connectors are manufactured from 24 ga (0.040 inch for aluminum) or heavier. The **T11** end connector is manufactured from 22 ga (0.050 inch for aluminum) or heavier. When **TDC** (transverse duct connector by Lockformer) is indicated, it is an integral part of the duct or fitting and is roll formed on all sides of the end connections. **IR** is the intermediate reinforcement required. See Table 13 for a description of reinforcements and how they are applied. Both the major and the minor dimensions need to be checked for reinforcement requirements. Table 13 illustrates reinforcement when just the major dimension needs reinforced and when both the major and minor dimensions need reinforced. Fittings must be reinforced the same as duct. Determine the equivalent aluminum thickness requirements by multiplying the thickness in the above table by 1.44 and using the next heaviest available material. See Table 4 to determine the thickness by gauge and Table 1 to determine the gauge/thickness availability for various constructions.

	Pressure Classification (nominal 60-inch duct lengths)											
Maximum	±½ ir	nch wg	±1	inch wg	±2 i	nch wg	±3	inch wg	±4 inch wg		+6 inch wg	
Major Axis (inches)	GA	EC	GA	EC	EC IR GA	EC	GA	EC	GA	EC	GA	EC
(mones)	GA	IR	GA	IR		IR	GA	IR	GA	IR	GA	IR
10	26	T6/T1	26	T6/T1	26	T6/T1	26	T11/T1	26	T11/T1	24	T11/T1
10	20		20		20		20		20		24	
12	26	T6/T1	26	T6/T1	26	T11/T1	26	T11/T1	26	T11/T1	24	T11/T1
	20		20		20		20		20		24	
18	26	T6/T1	26	T11/T1	26	T11/T1	24	T11/T1	24	TDC	22	TDC
	20				20							
24	26	TDC	26	TDC	26	TDC	24	TDC	22	TDC	22	TDC
			-•									
26	26	TDC	26	TDC	26	TDC	24	TDC	22	TDC	20	TDC
			-•								_0	
28	26	TDC	26	TDC	24	TDC	22	TDC	22	TDC	18	TDC
-												
30	26	TDC	26	TDC	24	TDC	22	TDC	20	TDC	18	TDC
36	26	TDC	24	TDC	22	TDC	20	TDC	18	TDC	18	TDC
												JTR
42	26	TDC	26	TDC	24	TDC	18	TDC	22	TDC	22	TDC
		TDO		CTR		CTR		75.0		CTR/JTR		CTR/JTR
48	26	TDC	24	TDC	22	TDC	22	TDC	22	TDC	22	TDC
		CTR TDC		CTR TDC		CTR TDC		CTR/JTR TDC		CTR/JTR TDC		CTR/JTR TDC
54	26	CTR	24	CTR	22	CTR	22	CTR/JTR	22	2CTR/JTR	20	CTR/JTR
		TDC		TDC		TDC		TDC		TDC		TDC
60	24		24	CTR	22	CTR/JTR	22	2CTR/JTR	22	2CTR/JTR	18	CTR/JTR
		TDC		TDC		TDC		TDC		TDC		TDC
72	24	CTR	22	CTR	22	CTR/JTR	22	2CTR/JTR	20	2CTR/JTR	18	CTR/JTR
		TDC		TDC		TDC		TDC		TDC		
84	22	CTR	22	2CTR/JTR	22	2CTR/JTR	20	2CTR/JTR	18	2CTR/JTR	N/A	
		TDC		TDC		TDC		TDC		TDC		
96	22	CTR	20	2CTR/JTR	20	2CTR/JTR	18	2CTR/JTR	18	2CTR/JTR	N/A	
		UIK		ZOTR/JTK		20IN/JIK		201R/J1R		20TR/JTR		

Table 10 UNI-SEAL Rectangular Reinforcement for 5-Foot Joints Using Internal Tie Rod Reinforcement

The above table meets SMACNA 1995 duct construction standards for galvanized or stainless steel duct and fittings. When intermediate reinforcement is required, the Addendum No. 1, November, 1997, to HVAC Duct Construction Standards, Second Edition, 1995, is used for duct construction standards. For maximum major axis dimensions \leq 36 inches, the gauges which do not require intermediate reinforcement are given. See Tables 6 and 7 for other options. **EC** is the end connector type. See page 2 for a description of the end connector types used in the table (**T1, T6, T11 and TDC**). When **T1, T6 or T11** are listed, the **T1** is used on the minor dimension and the **T6 or T11** are used on the major dimension. The **T1** and **T6** end connectors are manufactured from 24 ga (0.040 inch for aluminum) or heavier. The **T11** end connector is manufactured from 22 ga (0.050 inch for aluminum) or heavier. When **TDC** (transverse duct connector by Lockformer) is indicated, it is an integral part of the duct or fitting and is roll formed on all sides of the end connections. **IR** is the intermediate reinforcement requirements. **CTR** means a center tie rod is used at midspan. **JTR** means a tie rod is used on each side of a joint. **2CTR/JTR** means two tie rods are used at midspan and one tie rod on each side of a joint. **2CTR/JTR** means two tie rods are used at midspan and one tie rod on each side of a joint. The **2CTR** tie rods are spaced at W/3. See Table 14 for a description of reinforcement and how they are applied. Both the major and the minor dimensions need to be checked for reinforcement requirements. Table 14 illustrates reinforcement by multiplying the thickness in the above table by 1.44 and using the next heaviest available material. See Table 4 to determine the thickness by gauge and Table 1 to determine the gauge/thickness availability for various constructions.

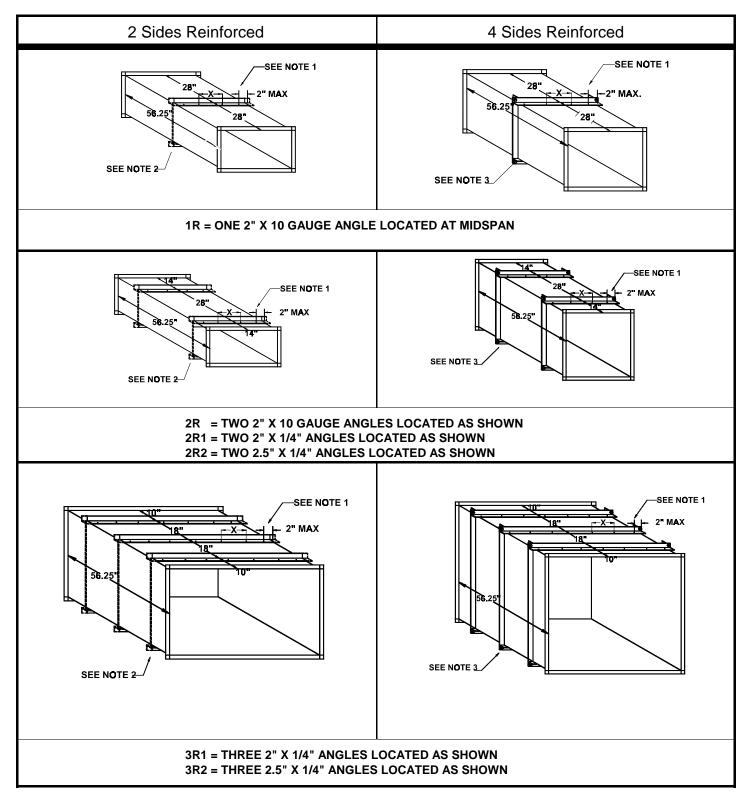
Note: Internal tie rods at midspan are not allowed in the following applications:

- In ducts outside of buildings when the ducts do not have waterproof external insulation or waterproof and corrosion resistant duct wall penetrations.
- In ducts in which condensation or grease would collect except where no wall penetrations occur or the penetration is waterproof.
- In underground, in-slab or under-slab ducts.
- In fittings on non-parallel duct sides unless they do not penetrate the duct or they use load distributing means such as shims or wedges.
- When the air velocity exceeds 2500 fpm.
- Near centrifugal and axial flow fans where SYSTEM EFFECT FACTORS apply.

In these cases, use external reinforcement.

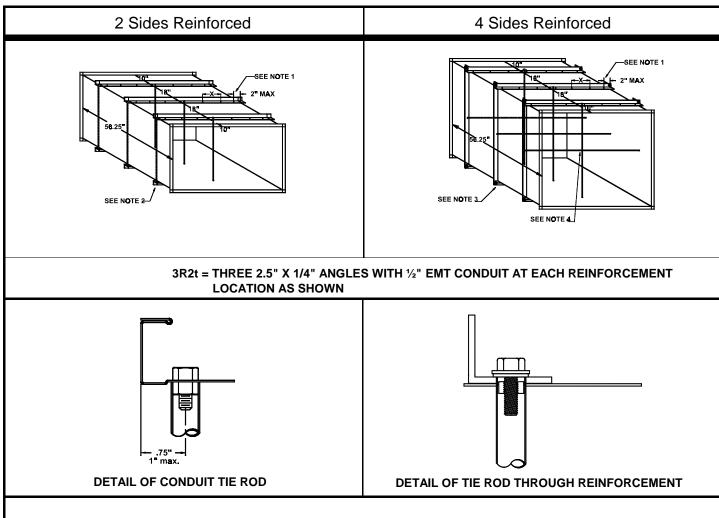
Maximum	Pressure Classification (nominal 72-inch duct lengths)												
Major Axis	±½ ir	nch wg	±1 inch wg		±2	inch wg	±3 inch wg		±4 inch wg		+6 inch wg		
(inches)	GA	EC	GA	EC	EC GA		GA	EC	GA	EC	GA	EC	
(UA	IR	5	IR	07	IR	07	IR	5	IR	07	IR	
10	26	T6/T1	26	T6/T1	26	T6/T1	26	T11/T1	24	T11/T1	22	T11/T1(R)	
12	26	T6/T1	26	T6/T1	24	T11/T1	24	T11/T1	24	T11/T1	22	T11/T1(R)	
18	26	T6/T1	26	T11/T1	24	T11/T1	24	T11/T1	22	TDC	20	TDC	
10	20		20		24		24		22		20		
24	26	TDC	26	TDC	24	TDC	22	TDC	20	TDC	20	TDC	
26	26	TDC	26	TDC	24	TDC	22	TDC	20	TDC	20	TDC	
		TDO		TDO		750		75.0		TDO		TDO	
28	26	TDC	26	TDC	22	TDC	22	TDC	20	TDC	18	TDC	
		TDC		TDC		TDC		TDC		TDC	4.0	TDC	
30	26		26		22		20		18		18		
36	26	TDC	24	TDC	20	TDC	18	TDC	18	TDC	20	TDC	
50	20		24		20		10		10		20	CTR/JTR	
42	26	TDC	26	TDC	24	TDC	22	TDC	22	TDC	20	TDC	
				CTR		CTR		CTR/JTR		CTR/JTR	•	CTR/JTR	
48	26	TDC	24	TDC	22	TDC	22	TDC	22	TDC	18	TDC	
		CTR		CTR		CTR		CTR/JTR		CTR/JTR		CTR/JTR	
54	24	TDC	24	TDC	22	TDC	22	TDC	20	TDC	18	TDC	
		CTR TDC		CTR TDC		CTR/JTR TDC		2CTR/JTR TDC		2CTR/JTR TDC		CTR/JTR TDC	
60	24	CTR	22	CTR	22	CTR/JTR	20	2CTR/JTR	20	2CTR/JTR	18	2CTR/JTR	
		TDC		TDC		TDC		TDC		TDC		2011/311	
72	24	CTR	22	CTR/JTR	22	2CTR/JTR	20	2CTR/JTR	18	2CTR/JTR	N/A		
		TDC		TDC		TDC	40	TDC		TDC			
84	22	CTR	22	2CTR/JTR	20	2CTR/JTR	18	2CTR/JTR	18	2CTR/JTR	N/A		
96	22	TDC	20	TDC	18	TDC	N/A		N/A		NI/A		
96	22	CTR	20	2CTR/JTR	10	2CTR/JTR	IN/A		IN/A		N/A		

Table 11 -	UNI-SEAL Rectangular Reinforcement for 6-Foot Joints Using Internal Tie Rod Reinforcement


The above table meets SMACNA 1995 duct construction standards for galvanized or stainless steel duct and fittings. When intermediate reinforcement is required, the Addendum No. 1, November, 1997, to HVAC Duct Construction Standards, Second Edition, 1995, is used for duct construction standards. For maximum major axis dimensions \leq 36 inches, the gauges which do not require intermediate reinforcement are given. See Tables 8 and 9 for other options. **EC** is the end connector type. See page 2 for a description of the end connector types used in the table (**T1, T6, T11 and TDC**). When **T1, T6 or T11** are listed, the **T1** is used on the minor dimension and the **T6 or T11** are used on the major dimension. The **T1** and **T6** end connectors are manufactured from 24 ga (0.040 inch for aluminum) or heavier. The **T11** end connector is manufactured from 22 ga (0.050 inch for aluminum) or heavier. When **TDC** (transverse duct connector by Lockformer) is indicated, it is an integral part of the duct or fitting and is roll formed on all sides of the end connections. **IR** is the intermediate tie rod reinforcement required. **CTR** means a center tie rod is used at midspan. **JTR** means a tie rod is used on each side of a joint. **2CTR/JTR** means two tie rods are used at midspan and one tie rod on each side of a joint. The **2CTR** tie rods are spaced at W/3. See Table 15 for a description of reinforcement and how they are applied. Both the major and the minor dimensions need to be checked for reinforcement requirements. Table 15 illustrates reinforcement when just the major dimension needs reinforced and when both the major and minor dimensions need reinforce. Fittings must be reinforced the same as duct. Determine the equivalent aluminum thickness requirements by multiplying the thickness in the above table by 1.44 and using the next heaviest available material. See Table 4 to determine the thickness by gauge and Table 1 to determine the gauge/thickness availability for various constructions.

Note: Internal tie rods at midspan are not allowed in the following applications:

- In ducts outside of buildings when the ducts do not have waterproof external insulation or waterproof and corrosion resistant duct wall penetrations.
- In ducts in which condensation or grease would collect except where no wall penetrations occur or the penetration is waterproof.
- In underground, in-slab or under-slab ducts.
- In fittings on non-parallel duct sides unless they do not penetrate the duct or they use load distributing means such as shims or wedges.
- When the air velocity exceeds 2500 fpm.
- Near centrifugal and axial flow fans where SYSTEM EFFECT FACTORS apply.


In these cases, use external reinforcement.

Reinforcement for 5-Foot Joints Using External Angle (continued)

McGill AirFlow

NOTES:

Table 12 -

- ^{1.} X = tack weld spacing at 12" maximum starting at a maximum of 2" from the edge. When end ties are used the 2" maximum interval may be omitted.
- ² Outside tie rods are required when the pressure classification is at 4" wg or more with two sides reinforced.
- ^{3.} Tie ends with 5/16" bolts or adequate welds when duct is at 4" wg or more with four sides reinforced. When welding use two parallel welds.
- ^{4.} When tie rods are required in both directions, space apart ½" to 1" maximum to avoid contact.
- ^{5.} When T6/T1 or T11/T1 end connectors are used, the overall dimension for 5-ft. duct is 59" and the distance to reinforcement is midspan for 1R; 15" for 2R, 2R1, and 2R2; and 9" for 3R2 or 3R2t.
- ^{6.} For T11/T1(R), a 2" x 10 gauge angle must be included at the end connector as well on all four sides.

 Table 13 Reinforcement for 6-Foot Joints Using External Angle

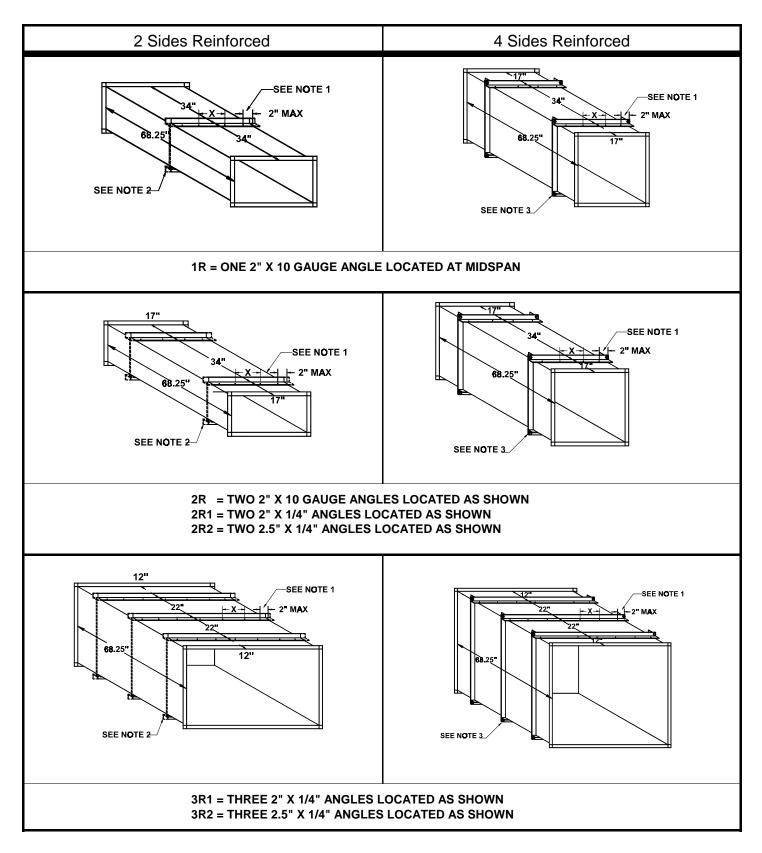
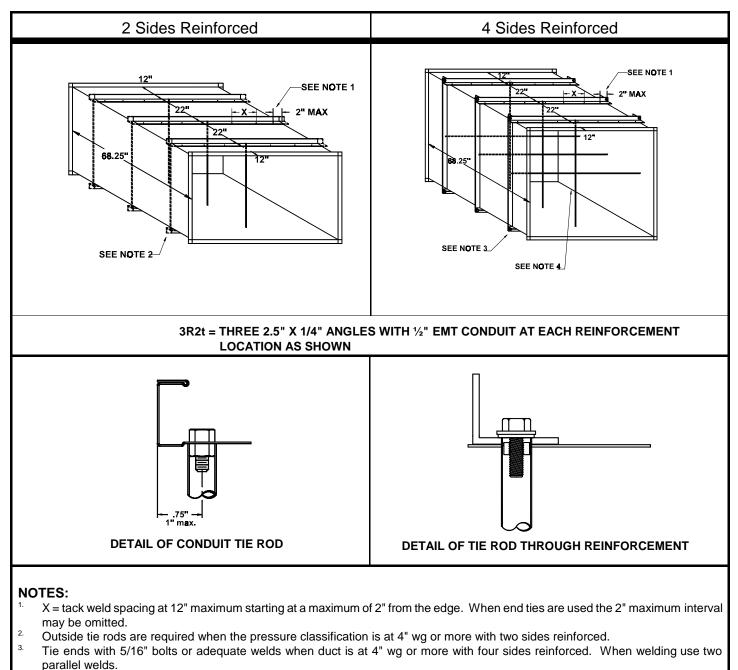
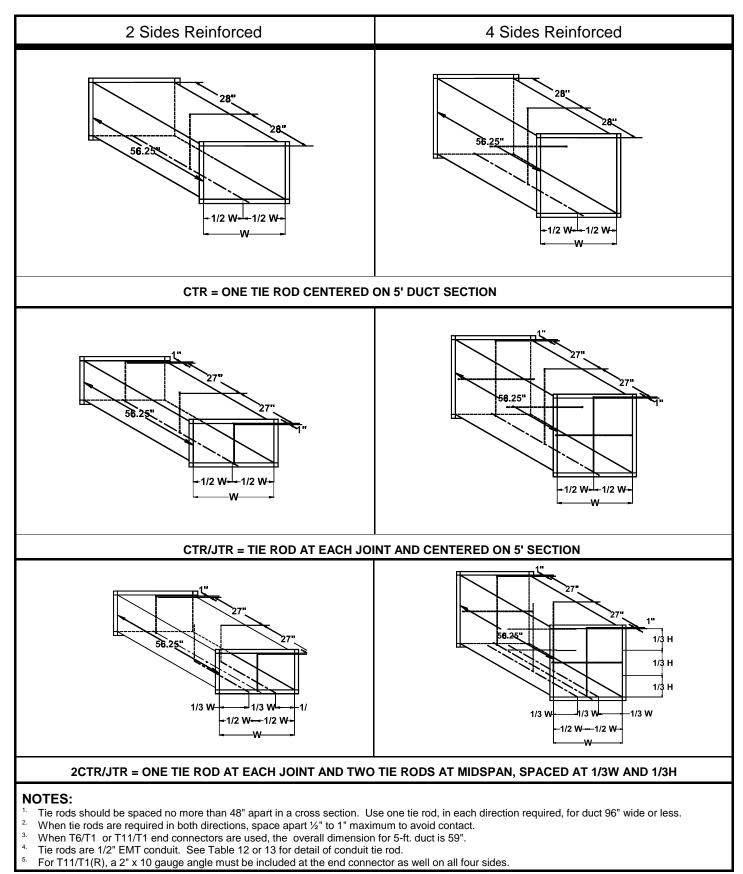
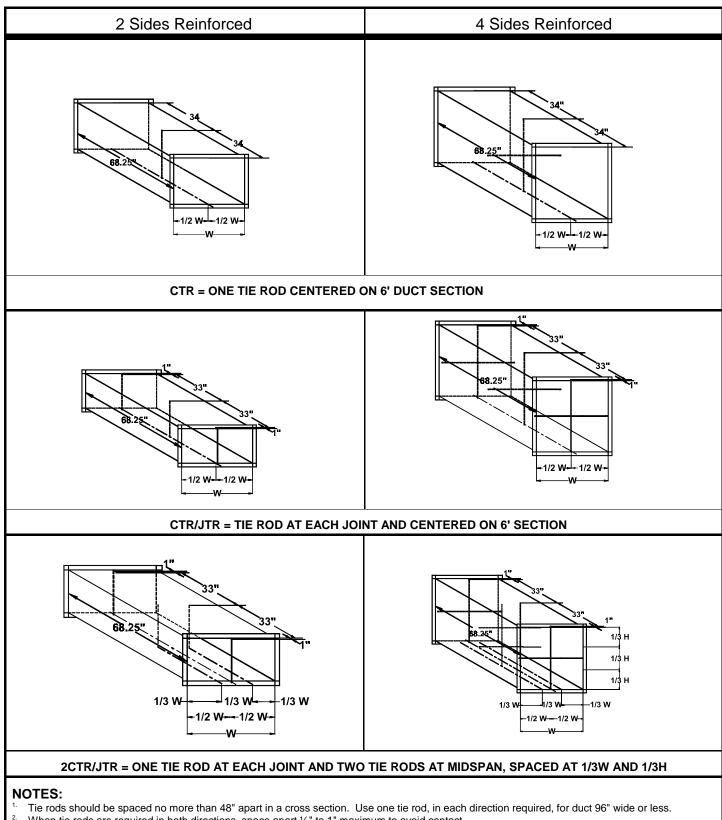




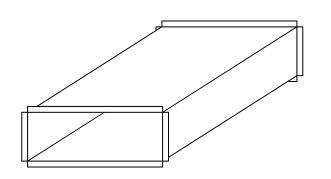
 Table 13 Reinforcement for 6-Foot Joints Using External Angle (continued)



- ^{4.} When tie rods are required in both directions, space apart ½" to 1" maximum to avoid contact.
- ^{5.} When T6/T1 or T11/T1 end connectors are used, the overall dimension for 6-ft. duct is 71" and the distance to reinforcement is midspan for 1R; 18" for 2R, 2R1, and 2R2; and 12" for 3R2 or 3R2t.
- ⁶ For T11/T1(R), a 2" x 10 gauge angle must be included at the end connector as well on all four sides.

 Table 14 Reinforcement for 5-Foot Joints Using Internal Tie Rods

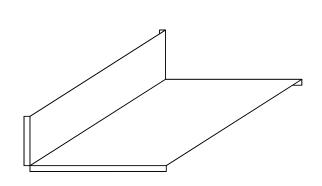
Table 15 Reinforcement for 6-Foot Joints Using Internal Tie Rods



- ^{2.} When the rods are required in both directions, space apart $\frac{1}{2}$ to 1" maximum to avoid contact.
- ^{3.} When T6/T1 or T11/T1 end connectors are used, the overall dimension for 5-ft. duct is 59".
- ⁴ Tie rods are 1/2" EMT conduit. See Table 12 or 13 for detail of conduit tie rod.
- ^{5.} For T11/T1(R), a 2" x 10 gauge angle must be included at the end connector as well on all four sides.

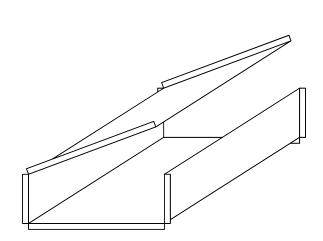
DUCT

UNI-SEAL DUCT


(Assembled)

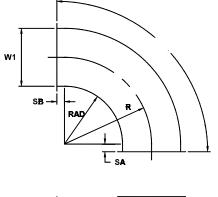
DESIGNATION: AD

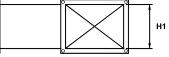
UNI-SEAL DUCT


(L - Shaped or knocked down)

DESIGNATION: LD

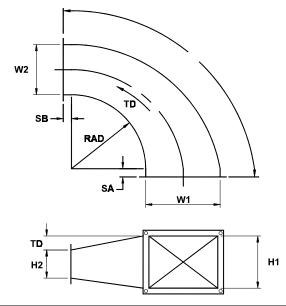
UNI-SEAL DUCT

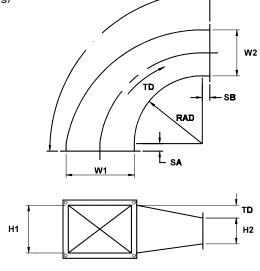

(Wrap around)



DESIGNATION: WD

ELBOWS


RADIUS ELBOW


REDUCING RADIUS ELBOW

REDUCING RADIUS ELBOW

DESIGNATION: SAT(*)E-θ

DIMENSIONS:

 $\frac{\text{User Specified}}{\text{W1, H1, RAD, SA, SB,}}$ $\theta = 1^{\circ} \text{ to } 90^{\circ}$

 $\frac{\text{Defaults}}{\text{SA, SB}} = 0$ RAD = W1

DESIGNATION: SAT(*)ELR-θ

DIMENSIONS:

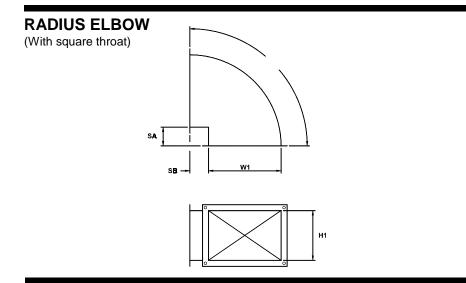
 $\frac{\text{User Specified}}{\text{W1, H1, W2, H2,}}$ RAD, TD, SA, SB, $\theta = 1^{\circ}$ to 90°

 $\frac{\text{Defaults}}{\text{SA, SB}} = 0$ RAD = W1 TD = 0

Note: When TD = 0, then fitting

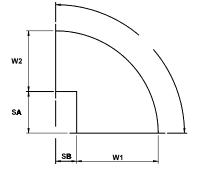
DESIGNATION: SAT(*)ER-θ

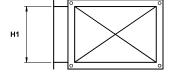
DIMENSIONS:


 $\frac{\text{User Specified}}{\text{W1, H1, W2, H2,}}$ RAD, TD, SA, SB, $\theta = 1^{\circ}$ to 90°

$\frac{\text{Defaults}}{\text{SA, SB}} = 0$

RAD = W1TD = 0


Note: When TD = 0, then fitting will be FOT.


ELBOWS

REDUCING RADIUS ELBOW

(With square throat)

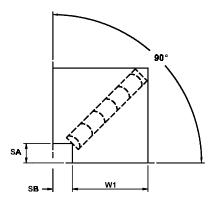
DESIGNATION: SAT(*)ES-θ

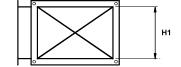
DIMENSIONS:

 $\frac{\text{User Specified}}{\text{W1, H1, SA, SB,}}$ $\theta = 1^{\circ} \text{ to } 90^{\circ}$

<u>Defaults</u> SA, SB = 4"

DESIGNATION: SAT(*)ESR-θ


DIMENSIONS:


 $\frac{\text{User Specified}}{\text{W1, H1, W2, SA, SB,}}$ $\theta = 1^{\circ} \text{ to } 90^{\circ}$

<u>Defaults</u> SA, SB = 4"

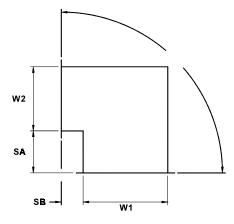
ELBOWS

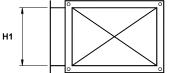
MITERED ELBOW

DESIGNATION:

SAT(*)EMV-90 with turning vanes (shown) SAT(*)EM-θ without turning vanes (not shown)

DIMENSIONS:


User Specified W1, H1, SA, SB, Type of Vane(see table below), $\theta = 1^{\circ}$ to 90°(only for elbows without turning vanes)


<u>Defaults</u> SA, SB = 4"

Types of Vanes (Must be Specified)

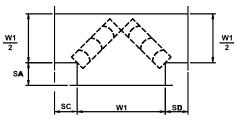
Туре	Radius (inches)	Approximate spacing (inches)	Gauge
Single Thickness	2	1 1/2	24
Single Thickness	4 1/2	3 1/4	22
Double Thickness (default)	2	2 1/8-2 1/2	26
Double Thickness	4 1/2	3 1/4-3 1/2	24

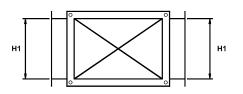
REDUCING MITERED ELBOW

DESIGNATION: SAT(*)EMR-θ

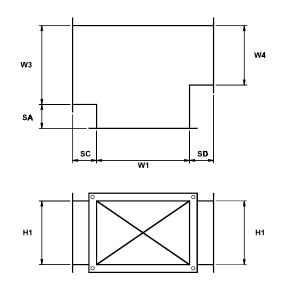
DIMENSIONS:

User Specified W1, W2, H1, SA, SB, $\theta = 1^{\circ}$ to 90°


<u>Defaults</u> SA, SB = 4"


Note: For a reducing mitered elbow with turning vanes (W2 < W1), use a standard mitered elbow with turning vanes and a reducing transition.

BULLHEAD TEES and Y-BRANCHES


BULLHEAD TEE

REDUCING BULLHEAD TEE

Y-BRANCH

DESIGNATION:

SAT(*)TBV with turning vanes (shown) SAT(*)TB

without turning vanes (not shown)

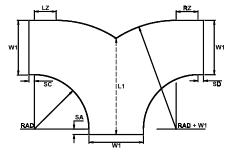
DIMENSIONS:

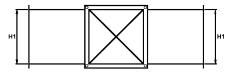
User Specified W1, H1, SA, SC, SD, Type of vane

Defauts

SA, SC, SD = 4"

See page 22 for Types of Vanes table.


DESIGNATION: SAT(*)TBR


DIMENSIONS:

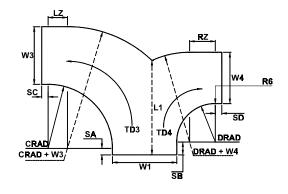
<u>User Specified</u> W1, H1, W3, W4, SA, SC, SD

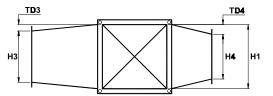
Defaults SA, SC, SD = 4"

Note: For a reducing bullhead tee with turning vanes (W3 or $W4 \neq W1/2$)), use a standard bullhead tee with turning vanes and reducing transitions.

DESIGNATION: SAT(*)YC

DIMENSIONS:


User Specified W1, H1, RAD, SA, SC, SD


 $\frac{\text{Defaults}}{\text{SA, SC, SD, LZ, RZ}} = 0$ RAD = W1

Notes: L1 is the crotch height. If it is too low, RZ and LZ will be adjusted to raise it. This will not affect the overall dimensions of the fitting.

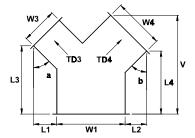
Y-BRANCHES

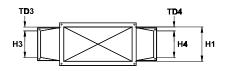
REDUCING Y-BRANCH

DESIGNATION: SAT(*)YCR

DIMENSIONS:

User Specified W1, H1, W3, H3, W4,H4, CRAD, DRAD, SA, SB, SC, SD, LZ, RZ


Defaults


SA, SB, SC, SD, LZ, RZ, TD3, TD4 = 0 CRAD, DRAD = W1

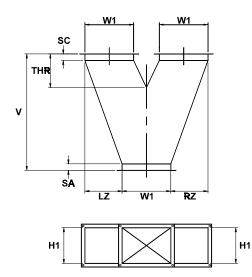
Notes:

- 1. When TD3 = 0, W3 is FOT. When TD4 = 0, W4 is FOT.
- 2. L1 is the crotch height. If it is too low, RZ and/or LZ will be adjusted to raise it. This will not affect the overall dimensions of the fitting.

REDUCING YV

DESIGNATION: SAT(*)YV

DIMENSIONS:

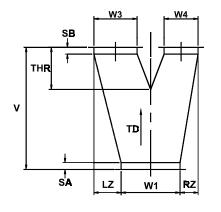

 $\frac{\text{User Specified}}{\text{W1, H1, W3, H3, W4, H4, }\theta_a, \theta_b, \text{L1, L2, L3, L4, V}}$

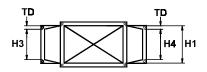
 $\frac{\text{Defaults}}{\text{TD3} = (\underline{\text{H1}} - \underline{\text{H3}})}{2}$ $\text{TD4} = (\underline{\text{H1}} - \underline{\text{H4}})}{2}$ $\theta_{a}, \theta_{b} = 45^{\circ}$

Note: L3 > L1, L4 > L2When TD3, TD4 = 0 then fitting will be FOT.

Y-BRANCHES

PANTS


DESIGNATION: SAT(*)YS

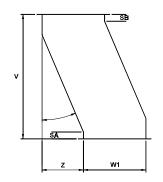

DIMENSIONS:

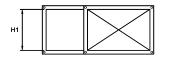
User Specified W1, H1, THR, LZ, RZ, V, SA, SC, SD

Defaults $\overline{SA, SC, SD} = 0$ V = 2W1

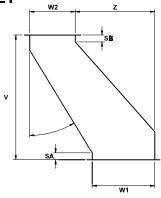
REDUCING PANTS

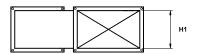
DESIGNATION: SAT(*)YSR

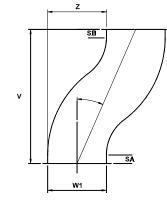

DIMENSIONS:

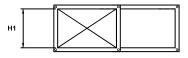

User Specified W1, H1, W3, H3, W4, THR, LZ, RZ, SA, SC, SD, TD, V

Defaults SA, SC, SD, TD = 0 V = 2W1Note: When TD = 0, then fitting will be FOT.


OFFSETS


OFFSET




REDUCING OFFSET

RADIUS OFFSET

DESIGNATION: SAT(*)Z

DIMENSIONS:

User Specified W1, H1, Z, SA, SB, V

 $\frac{\text{Defaults}}{\text{SA, SB}} = 0$ V = 2W1

Note: Z should not exceed .75 W1 or $\theta > 60^{\circ}$. If larger, use fabricated elbows and a straight length of duct.

DESIGNATION: SAT(*)ZR

DIMENSIONS:

User Specified W1, H1, W2, Z, SA, SB,V

 $\frac{\text{Defaults}}{\text{SA, SB}} = 0$

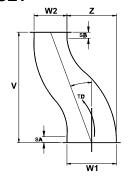
V = 2W1

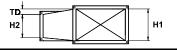
Note: Z should not exceed .75 W1 or $\theta > 60^{\circ}$. If larger, use fabricated elbows and a straight length of duct.

DESIGNATION: SAT(*)ZC

DIMENSIONS:

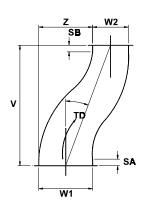
User Specified W1, H1, Z, SA, SB, V

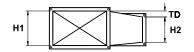

 $\frac{\text{Defaults}}{\text{SA, SB}} = 0$ V = 2W1


Note: Z should not exceed .75 W1 or $\theta > 60^{\circ}$. If larger, use fabricated elbows and a straight length of duct.

OFFSETS

REDUCING RADIUS OFFSET


(Left turning)




REDUCING RADIUS OFFSET

(Right turning)

MITERED ELBOW OFFSET

H1

DIMENSIONS:

User Specified W1, H1, W2, H2, Z, SA, SB, V, TD

 $\frac{\text{Defaults}}{\text{SA, SB}} = 0$ V = 2W1TD = 0

Note: When TD = 0, then fitting will be FOT.

DESIGNATION: SAT(*)ZCR

DIMENSIONS:

User Specified W1, H1, W2, H2, Z, SA, SB, V, TD

 $\frac{\text{Defaults}}{\text{SA, SB}} = 0$ V = 2W1TD = 0

Note: When TD = 0, then fitting will be FOT.

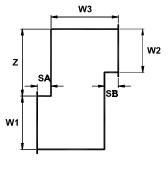
DESIGNATION:

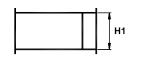
SAT(*)ZEV with turning vanes (shown)

SAT(*)ZE

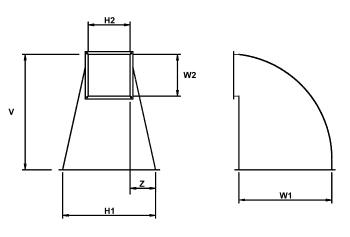
without turning vanes (not shown)

DIMENSIONS:


User Specified W1, H1, Z, SA, SB, Type of vanes


<u>Defaults</u> SA, SB = 4"

See page 22 for Types of Vanes table.


OFFSETS AND TRANSITIONS

REDUCING MITERED ELBOW OFFSET

PARKER

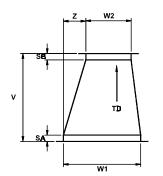
DESIGNATION: SAT(*)ZER

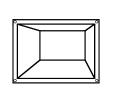
DIMENSIONS:

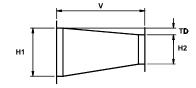
<u>User Specified</u> W1, H1, W2, W3, Z, SA, SB

Defaults SA, SB = 4"

Note: For a reducing mitered elbow offset with turning vanes (W2 < W1), use a standard mitered elbow offset with turning vanes and a reducing transition.


DESIGNATION: SAT(*)K


DIMENSIONS:

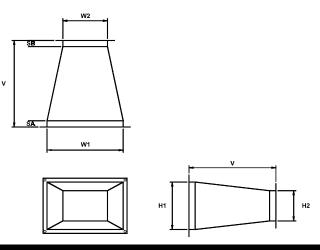

User Specified W1, H1, W2, H2, V, Z

 $\frac{\text{Defaults}}{\text{Z} = \frac{\text{H1} - \text{H2}}{2}}$

GENERAL TRANSITION

DESIGNATION: SAT(*)R-20

DIMENSIONS:

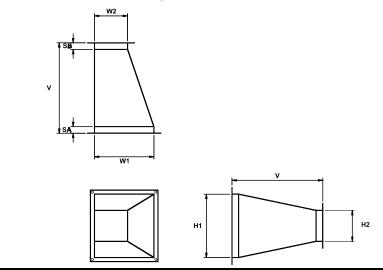

User Specified W1, H1, W2, H2, V, Z, TD

<u>Defaults</u> SA, SB = 0

Note: When TD = 0, the fitting will be FOT

TRANSITIONS

CONCENTRIC TRANSITION

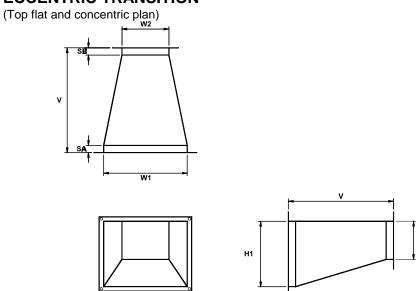

DESIGNATION: SAT(*)R-30

DIMENSIONS: User Specified W1, H1, W2, H2, V

 $\frac{\text{Defaults}}{\text{SA, SB}} = 0$

ECCENTRIC TRANSITION

(Left side flat and elevation concentric)


DESIGNATION: SAT(*)R-31

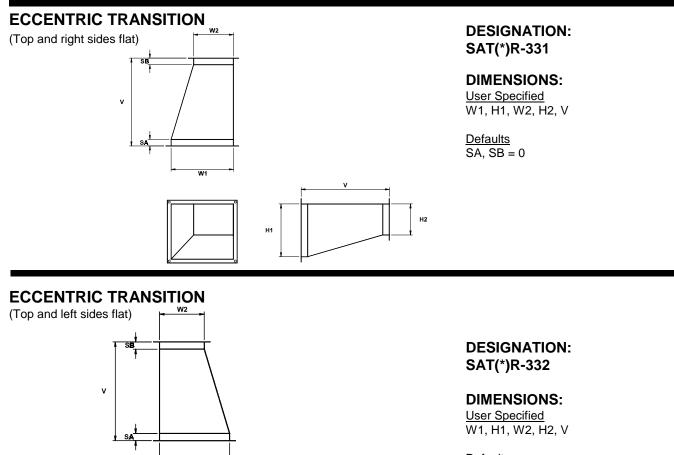
DIMENSIONS:

User Specified W1, H1, W2, H2, V

 $\frac{\text{Defaults}}{\text{SA, SB}} = 0$

ECCENTRIC TRANSITION

DESIGNATION: SAT(*)R-32

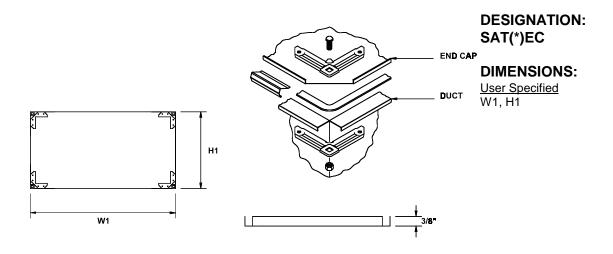

DIMENSIONS:

User Specified W1, H1, W2, H2, V

<u>Defaults</u> SA, SB = 0

H2

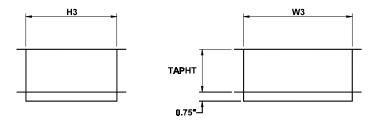
TRANSITIONS AND END CAP



v

 $\frac{\text{Defaults}}{\text{SA, SB}} = 0$

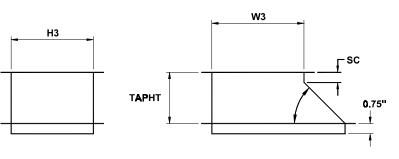
H2


END CAP

Н1

W1

90° TAP


DESIGNATION: SAT(*)PT

DIMENSIONS:

User Specified W3, H3, TAPHT

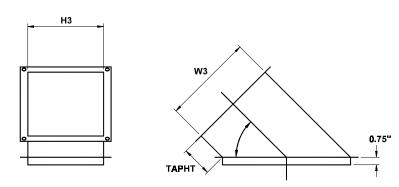
Defaults TAPHT = 3 inches

LOLOSS[™] TAP

DESIGNATION: SAT(*)PTL SAT(*)PTL-θ

(if $\theta \neq 45^\circ$)

DIMENSIONS:


User Specified W3, H3, TAPHT, $\theta = 1^{\circ}$ to 90° if $\theta \neq 45^{\circ}$

<u>Defaults</u>

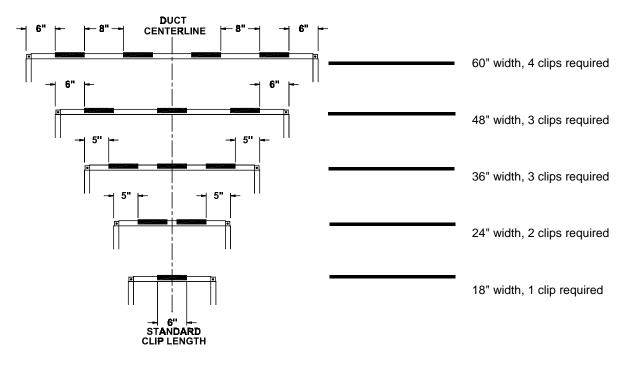
SC = 0TAPHT = 6 inches $\theta = 45$

Note: Use SC to extend the tap height rather than connecting to short pieces of ductwork.

ANGLED TAP

DESIGNATION: SAT(*)PL SAT(*)PL-θ

(if $\theta \neq 45^\circ$)


DIMENSIONS:

User Specified W3, H3, TAPHT, $\theta = 1^{\circ}$ to 90° if $\theta \neq 45^{\circ}$

 $\frac{\text{Defaults}}{\text{TAPHT}} = 3 \text{ inches}$ $\theta = 45$

DUCT CLIPS

DUCT CLIP REQUIREMENTS

McGill AirFlow LLC

An enterprise of United McGill Corporation — Founded in 1951

Corporate Headquarters

One Mission Park Groveport, Ohio 43125-1149 614/836-9981, Fax: 614/836-9843 E-mail: marketing@mcgillairflow.com Web site: mcgillairflow.com